mirror of
https://github.com/opencv/opencv.git
synced 2025-01-15 20:23:36 +08:00
485 lines
14 KiB
C++
485 lines
14 KiB
C++
/* Original code has been submitted by Liu Liu.
|
|
----------------------------------------------------------------------------------
|
|
* Spill-Tree for Approximate KNN Search
|
|
* Author: Liu Liu
|
|
* mailto: liuliu.1987+opencv@gmail.com
|
|
* Refer to Paper:
|
|
* An Investigation of Practical Approximate Nearest Neighbor Algorithms
|
|
* cvMergeSpillTree TBD
|
|
*
|
|
* Redistribution and use in source and binary forms, with or
|
|
* without modification, are permitted provided that the following
|
|
* conditions are met:
|
|
* Redistributions of source code must retain the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer.
|
|
* Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
* The name of Contributor may not be used to endorse or
|
|
* promote products derived from this software without
|
|
* specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
|
|
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
|
|
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
|
|
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
|
|
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
|
|
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
|
|
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
|
|
* OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "precomp.hpp"
|
|
#include "_featuretree.h"
|
|
|
|
struct CvSpillTreeNode
|
|
{
|
|
bool leaf; // is leaf or not (leaf is the point that have no more child)
|
|
bool spill; // is not a non-overlapping point (defeatist search)
|
|
CvSpillTreeNode* lc; // left child (<)
|
|
CvSpillTreeNode* rc; // right child (>)
|
|
int cc; // child count
|
|
CvMat* u; // projection vector
|
|
CvMat* center; // center
|
|
int i; // original index
|
|
double r; // radius of remaining feature point
|
|
double ub; // upper bound
|
|
double lb; // lower bound
|
|
double mp; // mean point
|
|
double p; // projection value
|
|
};
|
|
|
|
struct CvSpillTree
|
|
{
|
|
CvSpillTreeNode* root;
|
|
CvMat** refmat; // leaf ref matrix
|
|
bool* cache; // visited or not
|
|
int total; // total leaves
|
|
int naive; // under this value, we perform naive search
|
|
int type; // mat type
|
|
double rho; // under this value, it is a spill tree
|
|
double tau; // the overlapping buffer ratio
|
|
};
|
|
|
|
// find the farthest node in the "list" from "node"
|
|
static inline CvSpillTreeNode*
|
|
icvFarthestNode( CvSpillTreeNode* node,
|
|
CvSpillTreeNode* list,
|
|
int total )
|
|
{
|
|
double farthest = -1.;
|
|
CvSpillTreeNode* result = NULL;
|
|
for ( int i = 0; i < total; i++ )
|
|
{
|
|
double norm = cvNorm( node->center, list->center );
|
|
if ( norm > farthest )
|
|
{
|
|
farthest = norm;
|
|
result = list;
|
|
}
|
|
list = list->rc;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// clone a new tree node
|
|
static inline CvSpillTreeNode*
|
|
icvCloneSpillTreeNode( CvSpillTreeNode* node )
|
|
{
|
|
CvSpillTreeNode* result = (CvSpillTreeNode*)cvAlloc( sizeof(CvSpillTreeNode) );
|
|
memcpy( result, node, sizeof(CvSpillTreeNode) );
|
|
return result;
|
|
}
|
|
|
|
// append the link-list of a tree node
|
|
static inline void
|
|
icvAppendSpillTreeNode( CvSpillTreeNode* node,
|
|
CvSpillTreeNode* append )
|
|
{
|
|
if ( node->lc == NULL )
|
|
{
|
|
node->lc = node->rc = append;
|
|
node->lc->lc = node->rc->rc = NULL;
|
|
} else {
|
|
append->lc = node->rc;
|
|
append->rc = NULL;
|
|
node->rc->rc = append;
|
|
node->rc = append;
|
|
}
|
|
node->cc++;
|
|
}
|
|
|
|
#define _dispatch_mat_ptr(x, step) (CV_MAT_DEPTH((x)->type) == CV_32F ? (void*)((x)->data.fl+(step)) : (CV_MAT_DEPTH((x)->type) == CV_64F ? (void*)((x)->data.db+(step)) : (void*)(0)))
|
|
|
|
static void
|
|
icvDFSInitSpillTreeNode( const CvSpillTree* tr,
|
|
const int d,
|
|
CvSpillTreeNode* node )
|
|
{
|
|
if ( node->cc <= tr->naive )
|
|
{
|
|
// already get to a leaf, terminate the recursion.
|
|
node->leaf = true;
|
|
node->spill = false;
|
|
return;
|
|
}
|
|
|
|
// random select a node, then find a farthest node from this one, then find a farthest from that one...
|
|
// to approximate the farthest node-pair
|
|
static CvRNG rng_state = cvRNG(0xdeadbeef);
|
|
int rn = cvRandInt( &rng_state ) % node->cc;
|
|
CvSpillTreeNode* lnode = NULL;
|
|
CvSpillTreeNode* rnode = node->lc;
|
|
for ( int i = 0; i < rn; i++ )
|
|
rnode = rnode->rc;
|
|
lnode = icvFarthestNode( rnode, node->lc, node->cc );
|
|
rnode = icvFarthestNode( lnode, node->lc, node->cc );
|
|
|
|
// u is the projection vector
|
|
node->u = cvCreateMat( 1, d, tr->type );
|
|
cvSub( lnode->center, rnode->center, node->u );
|
|
cvNormalize( node->u, node->u );
|
|
|
|
// find the center of node in hyperspace
|
|
node->center = cvCreateMat( 1, d, tr->type );
|
|
cvZero( node->center );
|
|
CvSpillTreeNode* it = node->lc;
|
|
for ( int i = 0; i < node->cc; i++ )
|
|
{
|
|
cvAdd( it->center, node->center, node->center );
|
|
it = it->rc;
|
|
}
|
|
cvConvertScale( node->center, node->center, 1./node->cc );
|
|
|
|
// project every node to "u", and find the mean point "mp"
|
|
it = node->lc;
|
|
node->r = -1.;
|
|
node->mp = 0;
|
|
for ( int i = 0; i < node->cc; i++ )
|
|
{
|
|
node->mp += ( it->p = cvDotProduct( it->center, node->u ) );
|
|
double norm = cvNorm( node->center, it->center );
|
|
if ( norm > node->r )
|
|
node->r = norm;
|
|
it = it->rc;
|
|
}
|
|
node->mp = node->mp / node->cc;
|
|
|
|
// overlapping buffer and upper bound, lower bound
|
|
double ob = (lnode->p-rnode->p)*tr->tau*.5;
|
|
node->ub = node->mp+ob;
|
|
node->lb = node->mp-ob;
|
|
int sl = 0, l = 0;
|
|
int sr = 0, r = 0;
|
|
it = node->lc;
|
|
for ( int i = 0; i < node->cc; i++ )
|
|
{
|
|
if ( it->p <= node->ub )
|
|
sl++;
|
|
if ( it->p >= node->lb )
|
|
sr++;
|
|
if ( it->p < node->mp )
|
|
l++;
|
|
else
|
|
r++;
|
|
it = it->rc;
|
|
}
|
|
// precision problem, return the node as it is.
|
|
if (( l == 0 )||( r == 0 ))
|
|
{
|
|
cvReleaseMat( &(node->u) );
|
|
cvReleaseMat( &(node->center) );
|
|
node->leaf = true;
|
|
node->spill = false;
|
|
return;
|
|
}
|
|
CvSpillTreeNode* lc = (CvSpillTreeNode*)cvAlloc( sizeof(CvSpillTreeNode) );
|
|
memset(lc, 0, sizeof(CvSpillTreeNode));
|
|
CvSpillTreeNode* rc = (CvSpillTreeNode*)cvAlloc( sizeof(CvSpillTreeNode) );
|
|
memset(rc, 0, sizeof(CvSpillTreeNode));
|
|
lc->lc = lc->rc = rc->lc = rc->rc = NULL;
|
|
lc->cc = rc->cc = 0;
|
|
int undo = cvRound(node->cc*tr->rho);
|
|
if (( sl >= undo )||( sr >= undo ))
|
|
{
|
|
// it is not a spill point (defeatist search disabled)
|
|
it = node->lc;
|
|
for ( int i = 0; i < node->cc; i++ )
|
|
{
|
|
CvSpillTreeNode* next = it->rc;
|
|
if ( it->p < node->mp )
|
|
icvAppendSpillTreeNode( lc, it );
|
|
else
|
|
icvAppendSpillTreeNode( rc, it );
|
|
it = next;
|
|
}
|
|
node->spill = false;
|
|
} else {
|
|
// a spill point
|
|
it = node->lc;
|
|
for ( int i = 0; i < node->cc; i++ )
|
|
{
|
|
CvSpillTreeNode* next = it->rc;
|
|
if ( it->p < node->lb )
|
|
icvAppendSpillTreeNode( lc, it );
|
|
else if ( it->p > node->ub )
|
|
icvAppendSpillTreeNode( rc, it );
|
|
else {
|
|
CvSpillTreeNode* cit = icvCloneSpillTreeNode( it );
|
|
icvAppendSpillTreeNode( lc, it );
|
|
icvAppendSpillTreeNode( rc, cit );
|
|
}
|
|
it = next;
|
|
}
|
|
node->spill = true;
|
|
}
|
|
node->lc = lc;
|
|
node->rc = rc;
|
|
|
|
// recursion process
|
|
icvDFSInitSpillTreeNode( tr, d, node->lc );
|
|
icvDFSInitSpillTreeNode( tr, d, node->rc );
|
|
}
|
|
|
|
static CvSpillTree*
|
|
icvCreateSpillTree( const CvMat* raw_data,
|
|
const int naive,
|
|
const double rho,
|
|
const double tau )
|
|
{
|
|
int n = raw_data->rows;
|
|
int d = raw_data->cols;
|
|
|
|
CvSpillTree* tr = (CvSpillTree*)cvAlloc( sizeof(CvSpillTree) );
|
|
tr->root = (CvSpillTreeNode*)cvAlloc( sizeof(CvSpillTreeNode) );
|
|
memset(tr->root, 0, sizeof(CvSpillTreeNode));
|
|
tr->refmat = (CvMat**)cvAlloc( sizeof(CvMat*)*n );
|
|
tr->cache = (bool*)cvAlloc( sizeof(bool)*n );
|
|
tr->total = n;
|
|
tr->naive = naive;
|
|
tr->rho = rho;
|
|
tr->tau = tau;
|
|
tr->type = raw_data->type;
|
|
|
|
// tie a link-list to the root node
|
|
tr->root->lc = (CvSpillTreeNode*)cvAlloc( sizeof(CvSpillTreeNode) );
|
|
memset(tr->root->lc, 0, sizeof(CvSpillTreeNode));
|
|
tr->root->lc->center = cvCreateMatHeader( 1, d, tr->type );
|
|
cvSetData( tr->root->lc->center, _dispatch_mat_ptr(raw_data, 0), raw_data->step );
|
|
tr->refmat[0] = tr->root->lc->center;
|
|
tr->root->lc->lc = NULL;
|
|
tr->root->lc->leaf = true;
|
|
tr->root->lc->i = 0;
|
|
CvSpillTreeNode* node = tr->root->lc;
|
|
for ( int i = 1; i < n; i++ )
|
|
{
|
|
CvSpillTreeNode* newnode = (CvSpillTreeNode*)cvAlloc( sizeof(CvSpillTreeNode) );
|
|
memset(newnode, 0, sizeof(CvSpillTreeNode));
|
|
newnode->center = cvCreateMatHeader( 1, d, tr->type );
|
|
cvSetData( newnode->center, _dispatch_mat_ptr(raw_data, i*d), raw_data->step );
|
|
tr->refmat[i] = newnode->center;
|
|
newnode->lc = node;
|
|
newnode->i = i;
|
|
newnode->leaf = true;
|
|
newnode->rc = NULL;
|
|
node->rc = newnode;
|
|
node = newnode;
|
|
}
|
|
tr->root->rc = node;
|
|
tr->root->cc = n;
|
|
icvDFSInitSpillTreeNode( tr, d, tr->root );
|
|
return tr;
|
|
}
|
|
|
|
static void
|
|
icvSpillTreeNodeHeapify( CvSpillTreeNode** heap,
|
|
int i,
|
|
const int k )
|
|
{
|
|
if ( heap[i] == NULL )
|
|
return;
|
|
int l, r, largest = i;
|
|
CvSpillTreeNode* inp;
|
|
do {
|
|
i = largest;
|
|
r = (i+1)<<1;
|
|
l = r-1;
|
|
if (( l < k )&&( heap[l] == NULL ))
|
|
largest = l;
|
|
else if (( r < k )&&( heap[r] == NULL ))
|
|
largest = r;
|
|
else {
|
|
if (( l < k )&&( heap[l]->mp > heap[i]->mp ))
|
|
largest = l;
|
|
if (( r < k )&&( heap[r]->mp > heap[largest]->mp ))
|
|
largest = r;
|
|
}
|
|
if ( largest != i )
|
|
CV_SWAP( heap[largest], heap[i], inp );
|
|
} while ( largest != i );
|
|
}
|
|
|
|
static void
|
|
icvSpillTreeDFSearch( CvSpillTree* tr,
|
|
CvSpillTreeNode* node,
|
|
CvSpillTreeNode** heap,
|
|
int* es,
|
|
const CvMat* desc,
|
|
const int k,
|
|
const int emax )
|
|
{
|
|
if ((emax > 0)&&( *es >= emax ))
|
|
return;
|
|
double dist, p=0;
|
|
while ( node->spill )
|
|
{
|
|
// defeatist search
|
|
if ( !node->leaf )
|
|
p = cvDotProduct( node->u, desc );
|
|
if ( p < node->lb && node->lc->cc >= k ) // check the number of children larger than k otherwise you'll skip over better neighbor
|
|
node = node->lc;
|
|
else if ( p > node->ub && node->rc->cc >= k )
|
|
node = node->rc;
|
|
else
|
|
break;
|
|
if ( NULL == node )
|
|
return;
|
|
}
|
|
if ( node->leaf )
|
|
{
|
|
// a leaf, naive search
|
|
CvSpillTreeNode* it = node->lc;
|
|
for ( int i = 0; i < node->cc; i++ )
|
|
{
|
|
if ( !tr->cache[it->i] )
|
|
{
|
|
it->mp = cvNorm( it->center, desc );
|
|
tr->cache[it->i] = true;
|
|
if (( heap[0] == NULL)||( it->mp < heap[0]->mp ))
|
|
{
|
|
heap[0] = it;
|
|
icvSpillTreeNodeHeapify( heap, 0, k );
|
|
(*es)++;
|
|
}
|
|
}
|
|
it = it->rc;
|
|
}
|
|
return;
|
|
}
|
|
dist = cvNorm( node->center, desc );
|
|
// impossible case, skip
|
|
if (( heap[0] != NULL )&&( dist-node->r > heap[0]->mp ))
|
|
return;
|
|
p = cvDotProduct( node->u, desc );
|
|
// guided dfs
|
|
if ( p < node->mp )
|
|
{
|
|
icvSpillTreeDFSearch( tr, node->lc, heap, es, desc, k, emax );
|
|
icvSpillTreeDFSearch( tr, node->rc, heap, es, desc, k, emax );
|
|
} else {
|
|
icvSpillTreeDFSearch( tr, node->rc, heap, es, desc, k, emax );
|
|
icvSpillTreeDFSearch( tr, node->lc, heap, es, desc, k, emax );
|
|
}
|
|
}
|
|
|
|
static void
|
|
icvFindSpillTreeFeatures( CvSpillTree* tr,
|
|
const CvMat* desc,
|
|
CvMat* results,
|
|
CvMat* dist,
|
|
const int k,
|
|
const int emax )
|
|
{
|
|
assert( desc->type == tr->type );
|
|
CvSpillTreeNode** heap = (CvSpillTreeNode**)cvAlloc( k*sizeof(heap[0]) );
|
|
for ( int j = 0; j < desc->rows; j++ )
|
|
{
|
|
CvMat _desc = cvMat( 1, desc->cols, desc->type, _dispatch_mat_ptr(desc, j*desc->cols) );
|
|
for ( int i = 0; i < k; i++ )
|
|
heap[i] = NULL;
|
|
memset( tr->cache, 0, sizeof(bool)*tr->total );
|
|
int es = 0;
|
|
icvSpillTreeDFSearch( tr, tr->root, heap, &es, &_desc, k, emax );
|
|
CvSpillTreeNode* inp;
|
|
for ( int i = k-1; i > 0; i-- )
|
|
{
|
|
CV_SWAP( heap[i], heap[0], inp );
|
|
icvSpillTreeNodeHeapify( heap, 0, i );
|
|
}
|
|
int* rs = results->data.i+j*results->cols;
|
|
double* dt = dist->data.db+j*dist->cols;
|
|
for ( int i = 0; i < k; i++, rs++, dt++ )
|
|
if ( heap[i] != NULL )
|
|
{
|
|
*rs = heap[i]->i;
|
|
*dt = heap[i]->mp;
|
|
} else
|
|
*rs = -1;
|
|
}
|
|
cvFree( &heap );
|
|
}
|
|
|
|
static void
|
|
icvDFSReleaseSpillTreeNode( CvSpillTreeNode* node )
|
|
{
|
|
if ( node->leaf )
|
|
{
|
|
CvSpillTreeNode* it = node->lc;
|
|
for ( int i = 0; i < node->cc; i++ )
|
|
{
|
|
CvSpillTreeNode* s = it;
|
|
it = it->rc;
|
|
cvFree( &s );
|
|
}
|
|
} else {
|
|
cvReleaseMat( &node->u );
|
|
cvReleaseMat( &node->center );
|
|
icvDFSReleaseSpillTreeNode( node->lc );
|
|
icvDFSReleaseSpillTreeNode( node->rc );
|
|
}
|
|
cvFree( &node );
|
|
}
|
|
|
|
static void
|
|
icvReleaseSpillTree( CvSpillTree** tr )
|
|
{
|
|
for ( int i = 0; i < (*tr)->total; i++ )
|
|
cvReleaseMat( &((*tr)->refmat[i]) );
|
|
cvFree( &((*tr)->refmat) );
|
|
cvFree( &((*tr)->cache) );
|
|
icvDFSReleaseSpillTreeNode( (*tr)->root );
|
|
cvFree( tr );
|
|
}
|
|
|
|
class CvSpillTreeWrap : public CvFeatureTree {
|
|
CvSpillTree* tr;
|
|
public:
|
|
CvSpillTreeWrap(const CvMat* raw_data,
|
|
const int naive,
|
|
const double rho,
|
|
const double tau) {
|
|
tr = icvCreateSpillTree(raw_data, naive, rho, tau);
|
|
}
|
|
~CvSpillTreeWrap() {
|
|
icvReleaseSpillTree(&tr);
|
|
}
|
|
|
|
void FindFeatures(const CvMat* desc, int k, int emax, CvMat* results, CvMat* dist) {
|
|
icvFindSpillTreeFeatures(tr, desc, results, dist, k, emax);
|
|
}
|
|
};
|
|
|
|
CvFeatureTree* cvCreateSpillTree( const CvMat* raw_data,
|
|
const int naive,
|
|
const double rho,
|
|
const double tau ) {
|
|
return new CvSpillTreeWrap(raw_data, naive, rho, tau);
|
|
}
|