mirror of
https://github.com/opencv/opencv.git
synced 2024-12-12 23:49:36 +08:00
b71be65f57
Remove torch (old torch7) from dnn in 5.x #24294 Merge with https://github.com/opencv/opencv_extra/pull/1097 Completely removed torch (old torch7) from dnn: - removed modules/dnn/src/torch directory that contained torch7 model parser - removed readNetFromTorch() and readTorchBlob() public functions - removed torch7 references from comments and help texts - replaced links to t7 models by links to similar onnx models in js_style_transfer turtorial (similar to https://github.com/opencv/opencv/pull/24245/files)
345 lines
13 KiB
C++
345 lines
13 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
//
|
|
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
#include "perf_precomp.hpp"
|
|
#include "opencv2/core/ocl.hpp"
|
|
|
|
#include "opencv2/dnn/shape_utils.hpp"
|
|
|
|
#include "../test/test_common.hpp"
|
|
|
|
namespace opencv_test {
|
|
|
|
class DNNTestNetwork : public ::perf::TestBaseWithParam< tuple<Backend, Target> >
|
|
{
|
|
public:
|
|
dnn::Backend backend;
|
|
dnn::Target target;
|
|
|
|
dnn::Net net;
|
|
|
|
DNNTestNetwork()
|
|
{
|
|
backend = (dnn::Backend)(int)get<0>(GetParam());
|
|
target = (dnn::Target)(int)get<1>(GetParam());
|
|
}
|
|
|
|
void processNet(std::string weights, std::string proto,
|
|
const std::vector<std::tuple<Mat, std::string>>& inputs, const std::string& outputLayer = ""){
|
|
weights = findDataFile(weights, false);
|
|
if (!proto.empty())
|
|
proto = findDataFile(proto);
|
|
net = readNet(proto, weights);
|
|
// Set multiple inputs
|
|
for(auto &inp: inputs){
|
|
net.setInput(std::get<0>(inp), std::get<1>(inp));
|
|
}
|
|
|
|
net.setPreferableBackend(backend);
|
|
net.setPreferableTarget(target);
|
|
|
|
// Calculate multiple inputs memory consumption
|
|
std::vector<MatShape> netMatShapes;
|
|
for(auto &inp: inputs){
|
|
netMatShapes.push_back(shape(std::get<0>(inp)));
|
|
}
|
|
size_t weightsMemory = 0, blobsMemory = 0;
|
|
net.getMemoryConsumption(netMatShapes, weightsMemory, blobsMemory);
|
|
int64 flops = net.getFLOPS(netMatShapes);
|
|
CV_Assert(flops > 0);
|
|
|
|
net.forward(outputLayer); // warmup
|
|
|
|
std::cout << "Memory consumption:" << std::endl;
|
|
std::cout << " Weights(parameters): " << divUp(weightsMemory, 1u<<20) << " Mb" << std::endl;
|
|
std::cout << " Blobs: " << divUp(blobsMemory, 1u<<20) << " Mb" << std::endl;
|
|
std::cout << "Calculation complexity: " << flops * 1e-9 << " GFlops" << std::endl;
|
|
|
|
PERF_SAMPLE_BEGIN()
|
|
net.forward();
|
|
PERF_SAMPLE_END()
|
|
|
|
SANITY_CHECK_NOTHING();
|
|
}
|
|
|
|
void processNet(std::string weights, std::string proto,
|
|
Mat &input, const std::string& outputLayer = "")
|
|
{
|
|
processNet(weights, proto, {std::make_tuple(input, "")}, outputLayer);
|
|
}
|
|
|
|
void processNet(std::string weights, std::string proto,
|
|
Size inpSize, const std::string& outputLayer = "")
|
|
{
|
|
Mat input_data(inpSize, CV_32FC3);
|
|
randu(input_data, 0.0f, 1.0f);
|
|
Mat input = blobFromImage(input_data, 1.0, Size(), Scalar(), false);
|
|
processNet(weights, proto, input, outputLayer);
|
|
}
|
|
};
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, AlexNet)
|
|
{
|
|
processNet("dnn/bvlc_alexnet.caffemodel", "dnn/bvlc_alexnet.prototxt", cv::Size(227, 227));
|
|
}
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, GoogLeNet)
|
|
{
|
|
processNet("dnn/bvlc_googlenet.caffemodel", "dnn/bvlc_googlenet.prototxt", cv::Size(224, 224));
|
|
}
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, ResNet_50)
|
|
{
|
|
processNet("dnn/ResNet-50-model.caffemodel", "dnn/ResNet-50-deploy.prototxt", cv::Size(224, 224));
|
|
}
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, SqueezeNet_v1_1)
|
|
{
|
|
processNet("dnn/squeezenet_v1.1.caffemodel", "dnn/squeezenet_v1.1.prototxt", cv::Size(227, 227));
|
|
}
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, Inception_5h)
|
|
{
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) throw SkipTestException("");
|
|
processNet("dnn/tensorflow_inception_graph.pb", "", cv::Size(224, 224), "softmax2");
|
|
}
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, SSD)
|
|
{
|
|
processNet("dnn/VGG_ILSVRC2016_SSD_300x300_iter_440000.caffemodel", "dnn/ssd_vgg16.prototxt", cv::Size(300, 300));
|
|
}
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, MobileNet_SSD_Caffe)
|
|
{
|
|
processNet("dnn/MobileNetSSD_deploy_19e3ec3.caffemodel", "dnn/MobileNetSSD_deploy_19e3ec3.prototxt", cv::Size(300, 300));
|
|
}
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, MobileNet_SSD_v1_TensorFlow)
|
|
{
|
|
processNet("dnn/ssd_mobilenet_v1_coco_2017_11_17.pb", "ssd_mobilenet_v1_coco_2017_11_17.pbtxt", cv::Size(300, 300));
|
|
}
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, MobileNet_SSD_v2_TensorFlow)
|
|
{
|
|
processNet("dnn/ssd_mobilenet_v2_coco_2018_03_29.pb", "ssd_mobilenet_v2_coco_2018_03_29.pbtxt", cv::Size(300, 300));
|
|
}
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, DenseNet_121)
|
|
{
|
|
processNet("dnn/DenseNet_121.caffemodel", "dnn/DenseNet_121.prototxt", cv::Size(224, 224));
|
|
}
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, OpenPose_pose_mpi_faster_4_stages)
|
|
{
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && (target == DNN_TARGET_MYRIAD || target == DNN_TARGET_HDDL))
|
|
throw SkipTestException("");
|
|
// The same .caffemodel but modified .prototxt
|
|
// See https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/pose/poseParameters.cpp
|
|
processNet("dnn/openpose_pose_mpi.caffemodel", "dnn/openpose_pose_mpi_faster_4_stages.prototxt", cv::Size(368, 368));
|
|
}
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, opencv_face_detector)
|
|
{
|
|
processNet("dnn/opencv_face_detector.caffemodel", "dnn/opencv_face_detector.prototxt", cv::Size(300, 300));
|
|
}
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, Inception_v2_SSD_TensorFlow)
|
|
{
|
|
processNet("dnn/ssd_inception_v2_coco_2017_11_17.pb", "ssd_inception_v2_coco_2017_11_17.pbtxt", cv::Size(300, 300));
|
|
}
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, YOLOv3)
|
|
{
|
|
applyTestTag(CV_TEST_TAG_MEMORY_2GB);
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020040000) // nGraph compilation failure
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)
|
|
throw SkipTestException("Test is disabled in OpenVINO 2020.4");
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
|
|
throw SkipTestException("Test is disabled in OpenVINO 2020.4");
|
|
#endif
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2021010000) // nGraph compilation failure
|
|
if (target == DNN_TARGET_MYRIAD)
|
|
throw SkipTestException("");
|
|
#endif
|
|
|
|
Mat sample = imread(findDataFile("dnn/dog416.png"));
|
|
Mat inp = blobFromImage(sample, 1.0 / 255.0, Size(), Scalar(), true);
|
|
processNet("dnn/yolov3.weights", "dnn/yolov3.cfg", inp);
|
|
}
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, YOLOv4)
|
|
{
|
|
applyTestTag(CV_TEST_TAG_MEMORY_2GB);
|
|
if (target == DNN_TARGET_MYRIAD) // not enough resources
|
|
throw SkipTestException("");
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020040000) // nGraph compilation failure
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)
|
|
throw SkipTestException("Test is disabled in OpenVINO 2020.4");
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
|
|
throw SkipTestException("Test is disabled in OpenVINO 2020.4");
|
|
#endif
|
|
Mat sample = imread(findDataFile("dnn/dog416.png"));
|
|
Mat inp = blobFromImage(sample, 1.0 / 255.0, Size(), Scalar(), true);
|
|
processNet("dnn/yolov4.weights", "dnn/yolov4.cfg", inp);
|
|
}
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, YOLOv4_tiny)
|
|
{
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2021010000) // nGraph compilation failure
|
|
if (target == DNN_TARGET_MYRIAD)
|
|
throw SkipTestException("");
|
|
#endif
|
|
Mat sample = imread(findDataFile("dnn/dog416.png"));
|
|
Mat inp = blobFromImage(sample, 1.0 / 255.0, Size(), Scalar(), true);
|
|
processNet("dnn/yolov4-tiny-2020-12.weights", "dnn/yolov4-tiny-2020-12.cfg", inp);
|
|
}
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, YOLOv5) {
|
|
applyTestTag(CV_TEST_TAG_MEMORY_512MB);
|
|
Mat sample = imread(findDataFile("dnn/dog416.png"));
|
|
Mat inp = blobFromImage(sample, 1.0 / 255.0, Size(640, 640), Scalar(), true);
|
|
processNet("", "dnn/yolov5n.onnx", inp);
|
|
}
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, YOLOv8) {
|
|
applyTestTag(CV_TEST_TAG_MEMORY_512MB);
|
|
Mat sample = imread(findDataFile("dnn/dog416.png"));
|
|
Mat inp = blobFromImage(sample, 1.0 / 255.0, Size(640, 640), Scalar(), true);
|
|
processNet("", "dnn/yolov8n.onnx", inp);
|
|
}
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, YOLOX) {
|
|
applyTestTag(CV_TEST_TAG_MEMORY_512MB);
|
|
Mat sample = imread(findDataFile("dnn/dog416.png"));
|
|
Mat inp = blobFromImage(sample, 1.0 / 255.0, Size(640, 640), Scalar(), true);
|
|
processNet("", "dnn/yolox_s.onnx", inp);
|
|
}
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, EAST_text_detection)
|
|
{
|
|
processNet("dnn/frozen_east_text_detection.pb", "", cv::Size(320, 320));
|
|
}
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, FastNeuralStyle_eccv16)
|
|
{
|
|
processNet("", "dnn/mosaic-9.onnx", cv::Size(224, 224));
|
|
}
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, Inception_v2_Faster_RCNN)
|
|
{
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2019010000)
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
throw SkipTestException("Test is disabled in OpenVINO 2019R1");
|
|
#endif
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2019020000)
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
throw SkipTestException("Test is disabled in OpenVINO 2019R2");
|
|
#endif
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2021010000)
|
|
if (target == DNN_TARGET_MYRIAD)
|
|
throw SkipTestException("Test is disabled in OpenVINO 2021.1+ / MYRIAD");
|
|
#endif
|
|
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target != DNN_TARGET_CPU) ||
|
|
(backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16))
|
|
throw SkipTestException("");
|
|
processNet("dnn/faster_rcnn_inception_v2_coco_2018_01_28.pb",
|
|
"dnn/faster_rcnn_inception_v2_coco_2018_01_28.pbtxt",
|
|
cv::Size(800, 600));
|
|
}
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, EfficientDet)
|
|
{
|
|
if (target != DNN_TARGET_CPU)
|
|
throw SkipTestException("");
|
|
Mat sample = imread(findDataFile("dnn/dog416.png"));
|
|
Mat inp = blobFromImage(sample, 1.0 / 255.0, Size(512, 512), Scalar(), true);
|
|
processNet("dnn/efficientdet-d0.pb", "dnn/efficientdet-d0.pbtxt", inp);
|
|
}
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, EfficientNet)
|
|
{
|
|
Mat sample = imread(findDataFile("dnn/dog416.png"));
|
|
Mat inp = blobFromImage(sample, 1.0 / 255.0, Size(224, 224), Scalar(), true);
|
|
transposeND(inp, {0, 2, 3, 1}, inp);
|
|
processNet("", "dnn/efficientnet-lite4.onnx", inp);
|
|
}
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, YuNet) {
|
|
processNet("", "dnn/onnx/models/yunet-202303.onnx", cv::Size(640, 640));
|
|
}
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, SFace) {
|
|
processNet("", "dnn/face_recognition_sface_2021dec.onnx", cv::Size(112, 112));
|
|
}
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, MPPalm) {
|
|
Mat inp(cv::Size(192, 192), CV_32FC3);
|
|
randu(inp, 0.0f, 1.0f);
|
|
inp = blobFromImage(inp, 1.0, Size(), Scalar(), false);
|
|
transposeND(inp, {0, 2, 3, 1}, inp);
|
|
processNet("", "dnn/palm_detection_mediapipe_2023feb.onnx", inp);
|
|
}
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, MPHand) {
|
|
Mat inp(cv::Size(224, 224), CV_32FC3);
|
|
randu(inp, 0.0f, 1.0f);
|
|
inp = blobFromImage(inp, 1.0, Size(), Scalar(), false);
|
|
transposeND(inp, {0, 2, 3, 1}, inp);
|
|
processNet("", "dnn/handpose_estimation_mediapipe_2023feb.onnx", inp);
|
|
}
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, MPPose) {
|
|
Mat inp(cv::Size(256, 256), CV_32FC3);
|
|
randu(inp, 0.0f, 1.0f);
|
|
inp = blobFromImage(inp, 1.0, Size(), Scalar(), false);
|
|
transposeND(inp, {0, 2, 3, 1}, inp);
|
|
processNet("", "dnn/pose_estimation_mediapipe_2023mar.onnx", inp);
|
|
}
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, PPOCRv3) {
|
|
applyTestTag(CV_TEST_TAG_MEMORY_512MB);
|
|
processNet("", "dnn/onnx/models/PP_OCRv3_DB_text_det.onnx", cv::Size(736, 736));
|
|
}
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, PPHumanSeg) {
|
|
processNet("", "dnn/human_segmentation_pphumanseg_2023mar.onnx", cv::Size(192, 192));
|
|
}
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, CRNN) {
|
|
Mat inp(cv::Size(100, 32), CV_32FC1);
|
|
randu(inp, 0.0f, 1.0f);
|
|
inp = blobFromImage(inp, 1.0, Size(), Scalar(), false);
|
|
processNet("", "dnn/text_recognition_CRNN_EN_2021sep.onnx", inp);
|
|
}
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, ViTTrack) {
|
|
Mat inp1(cv::Size(128, 128), CV_32FC3);
|
|
Mat inp2(cv::Size(256, 256), CV_32FC3);
|
|
randu(inp1, 0.0f, 1.0f);
|
|
randu(inp2, 0.0f, 1.0f);
|
|
inp1 = blobFromImage(inp1, 1.0, Size(), Scalar(), false);
|
|
inp2 = blobFromImage(inp2, 1.0, Size(), Scalar(), false);
|
|
processNet("", "dnn/onnx/models/vitTracker.onnx", {std::make_tuple(inp1, "template"), std::make_tuple(inp2, "search")});
|
|
}
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, EfficientDet_int8)
|
|
{
|
|
if (target != DNN_TARGET_CPU || (backend != DNN_BACKEND_OPENCV &&
|
|
backend != DNN_BACKEND_TIMVX && backend != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)) {
|
|
throw SkipTestException("");
|
|
}
|
|
Mat inp = imread(findDataFile("dnn/dog416.png"));
|
|
inp = blobFromImage(inp, 1.0 / 255.0, Size(320, 320), Scalar(), true);
|
|
processNet("", "dnn/tflite/coco_efficientdet_lite0_v1_1.0_quant_2021_09_06.tflite", inp);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, DNNTestNetwork, dnnBackendsAndTargets());
|
|
|
|
} // namespace
|