mirror of
https://github.com/opencv/opencv.git
synced 2024-11-30 14:29:49 +08:00
183 lines
5.9 KiB
C++
183 lines
5.9 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
#ifdef HAVE_CUDA
|
|
|
|
////////////////////////////////////////////////////////
|
|
// BilateralFilter
|
|
|
|
PARAM_TEST_CASE(BilateralFilter, cv::gpu::DeviceInfo, cv::Size, MatType)
|
|
{
|
|
cv::gpu::DeviceInfo devInfo;
|
|
cv::Size size;
|
|
int type;
|
|
int kernel_size;
|
|
float sigma_color;
|
|
float sigma_spatial;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GET_PARAM(0);
|
|
size = GET_PARAM(1);
|
|
type = GET_PARAM(2);
|
|
|
|
kernel_size = 5;
|
|
sigma_color = 10.f;
|
|
sigma_spatial = 3.5f;
|
|
|
|
cv::gpu::setDevice(devInfo.deviceID());
|
|
}
|
|
};
|
|
|
|
GPU_TEST_P(BilateralFilter, Accuracy)
|
|
{
|
|
cv::Mat src = randomMat(size, type);
|
|
|
|
src.convertTo(src, type);
|
|
cv::gpu::GpuMat dst;
|
|
|
|
cv::gpu::bilateralFilter(loadMat(src), dst, kernel_size, sigma_color, sigma_spatial);
|
|
|
|
cv::Mat dst_gold;
|
|
cv::bilateralFilter(src, dst_gold, kernel_size, sigma_color, sigma_spatial);
|
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, src.depth() == CV_32F ? 1e-3 : 1.0);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Denoising, BilateralFilter, testing::Combine(
|
|
ALL_DEVICES,
|
|
testing::Values(cv::Size(128, 128), cv::Size(113, 113), cv::Size(639, 481)),
|
|
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_32FC1), MatType(CV_32FC3))
|
|
));
|
|
|
|
|
|
////////////////////////////////////////////////////////
|
|
// Brute Force Non local means
|
|
|
|
struct BruteForceNonLocalMeans: testing::TestWithParam<cv::gpu::DeviceInfo>
|
|
{
|
|
cv::gpu::DeviceInfo devInfo;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GetParam();
|
|
cv::gpu::setDevice(devInfo.deviceID());
|
|
}
|
|
};
|
|
|
|
GPU_TEST_P(BruteForceNonLocalMeans, Regression)
|
|
{
|
|
using cv::gpu::GpuMat;
|
|
|
|
cv::Mat bgr = readImage("denoising/lena_noised_gaussian_sigma=20_multi_0.png", cv::IMREAD_COLOR);
|
|
ASSERT_FALSE(bgr.empty());
|
|
|
|
cv::Mat gray;
|
|
cv::cvtColor(bgr, gray, CV_BGR2GRAY);
|
|
|
|
GpuMat dbgr, dgray;
|
|
cv::gpu::nonLocalMeans(GpuMat(bgr), dbgr, 20);
|
|
cv::gpu::nonLocalMeans(GpuMat(gray), dgray, 20);
|
|
|
|
#if 0
|
|
dumpImage("denoising/nlm_denoised_lena_bgr.png", cv::Mat(dbgr));
|
|
dumpImage("denoising/nlm_denoised_lena_gray.png", cv::Mat(dgray));
|
|
#endif
|
|
|
|
cv::Mat bgr_gold = readImage("denoising/nlm_denoised_lena_bgr.png", cv::IMREAD_COLOR);
|
|
cv::Mat gray_gold = readImage("denoising/nlm_denoised_lena_gray.png", cv::IMREAD_GRAYSCALE);
|
|
ASSERT_FALSE(bgr_gold.empty() || gray_gold.empty());
|
|
|
|
EXPECT_MAT_NEAR(bgr_gold, dbgr, 1e-4);
|
|
EXPECT_MAT_NEAR(gray_gold, dgray, 1e-4);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Denoising, BruteForceNonLocalMeans, ALL_DEVICES);
|
|
|
|
////////////////////////////////////////////////////////
|
|
// Fast Force Non local means
|
|
|
|
struct FastNonLocalMeans: testing::TestWithParam<cv::gpu::DeviceInfo>
|
|
{
|
|
cv::gpu::DeviceInfo devInfo;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GetParam();
|
|
cv::gpu::setDevice(devInfo.deviceID());
|
|
}
|
|
};
|
|
|
|
GPU_TEST_P(FastNonLocalMeans, Regression)
|
|
{
|
|
using cv::gpu::GpuMat;
|
|
|
|
cv::Mat bgr = readImage("denoising/lena_noised_gaussian_sigma=20_multi_0.png", cv::IMREAD_COLOR);
|
|
ASSERT_FALSE(bgr.empty());
|
|
|
|
cv::Mat gray;
|
|
cv::cvtColor(bgr, gray, CV_BGR2GRAY);
|
|
|
|
GpuMat dbgr, dgray;
|
|
cv::gpu::FastNonLocalMeansDenoising fnlmd;
|
|
|
|
fnlmd.simpleMethod(GpuMat(gray), dgray, 20);
|
|
fnlmd.labMethod(GpuMat(bgr), dbgr, 20, 10);
|
|
|
|
#if 0
|
|
dumpImage("denoising/fnlm_denoised_lena_bgr.png", cv::Mat(dbgr));
|
|
dumpImage("denoising/fnlm_denoised_lena_gray.png", cv::Mat(dgray));
|
|
#endif
|
|
|
|
cv::Mat bgr_gold = readImage("denoising/fnlm_denoised_lena_bgr.png", cv::IMREAD_COLOR);
|
|
cv::Mat gray_gold = readImage("denoising/fnlm_denoised_lena_gray.png", cv::IMREAD_GRAYSCALE);
|
|
ASSERT_FALSE(bgr_gold.empty() || gray_gold.empty());
|
|
|
|
EXPECT_MAT_NEAR(bgr_gold, dbgr, 1);
|
|
EXPECT_MAT_NEAR(gray_gold, dgray, 1);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Denoising, FastNonLocalMeans, ALL_DEVICES);
|
|
|
|
#endif // HAVE_CUDA
|