mirror of
https://github.com/opencv/opencv.git
synced 2025-01-15 20:23:36 +08:00
238 lines
8.9 KiB
C++
238 lines
8.9 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#ifndef __OPENCV_GPUBGSEGM_HPP__
|
|
#define __OPENCV_GPUBGSEGM_HPP__
|
|
|
|
#ifndef __cplusplus
|
|
# error gpubgsegm.hpp header must be compiled as C++
|
|
#endif
|
|
|
|
#include "opencv2/core/gpu.hpp"
|
|
#include "opencv2/video/background_segm.hpp"
|
|
|
|
#include <memory>
|
|
#include "opencv2/gpufilters.hpp"
|
|
|
|
namespace cv { namespace gpu {
|
|
|
|
////////////////////////////////////////////////////
|
|
// MOG
|
|
|
|
class CV_EXPORTS BackgroundSubtractorMOG : public cv::BackgroundSubtractorMOG
|
|
{
|
|
public:
|
|
using cv::BackgroundSubtractorMOG::apply;
|
|
using cv::BackgroundSubtractorMOG::getBackgroundImage;
|
|
|
|
virtual void apply(InputArray image, OutputArray fgmask, double learningRate, Stream& stream) = 0;
|
|
|
|
virtual void getBackgroundImage(OutputArray backgroundImage, Stream& stream) const = 0;
|
|
};
|
|
|
|
CV_EXPORTS Ptr<gpu::BackgroundSubtractorMOG>
|
|
createBackgroundSubtractorMOG(int history = 200, int nmixtures = 5,
|
|
double backgroundRatio = 0.7, double noiseSigma = 0);
|
|
|
|
////////////////////////////////////////////////////
|
|
// MOG2
|
|
|
|
class CV_EXPORTS BackgroundSubtractorMOG2 : public cv::BackgroundSubtractorMOG2
|
|
{
|
|
public:
|
|
using cv::BackgroundSubtractorMOG2::apply;
|
|
using cv::BackgroundSubtractorMOG2::getBackgroundImage;
|
|
|
|
virtual void apply(InputArray image, OutputArray fgmask, double learningRate, Stream& stream) = 0;
|
|
|
|
virtual void getBackgroundImage(OutputArray backgroundImage, Stream& stream) const = 0;
|
|
};
|
|
|
|
CV_EXPORTS Ptr<gpu::BackgroundSubtractorMOG2>
|
|
createBackgroundSubtractorMOG2(int history = 500, double varThreshold = 16,
|
|
bool detectShadows = true);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Foreground Object Detection from Videos Containing Complex Background.
|
|
// Liyuan Li, Weimin Huang, Irene Y.H. Gu, and Qi Tian.
|
|
// ACM MM2003 9p
|
|
class CV_EXPORTS FGDStatModel
|
|
{
|
|
public:
|
|
struct CV_EXPORTS Params
|
|
{
|
|
int Lc; // Quantized levels per 'color' component. Power of two, typically 32, 64 or 128.
|
|
int N1c; // Number of color vectors used to model normal background color variation at a given pixel.
|
|
int N2c; // Number of color vectors retained at given pixel. Must be > N1c, typically ~ 5/3 of N1c.
|
|
// Used to allow the first N1c vectors to adapt over time to changing background.
|
|
|
|
int Lcc; // Quantized levels per 'color co-occurrence' component. Power of two, typically 16, 32 or 64.
|
|
int N1cc; // Number of color co-occurrence vectors used to model normal background color variation at a given pixel.
|
|
int N2cc; // Number of color co-occurrence vectors retained at given pixel. Must be > N1cc, typically ~ 5/3 of N1cc.
|
|
// Used to allow the first N1cc vectors to adapt over time to changing background.
|
|
|
|
bool is_obj_without_holes; // If TRUE we ignore holes within foreground blobs. Defaults to TRUE.
|
|
int perform_morphing; // Number of erode-dilate-erode foreground-blob cleanup iterations.
|
|
// These erase one-pixel junk blobs and merge almost-touching blobs. Default value is 1.
|
|
|
|
float alpha1; // How quickly we forget old background pixel values seen. Typically set to 0.1.
|
|
float alpha2; // "Controls speed of feature learning". Depends on T. Typical value circa 0.005.
|
|
float alpha3; // Alternate to alpha2, used (e.g.) for quicker initial convergence. Typical value 0.1.
|
|
|
|
float delta; // Affects color and color co-occurrence quantization, typically set to 2.
|
|
float T; // A percentage value which determines when new features can be recognized as new background. (Typically 0.9).
|
|
float minArea; // Discard foreground blobs whose bounding box is smaller than this threshold.
|
|
|
|
// default Params
|
|
Params();
|
|
};
|
|
|
|
// out_cn - channels count in output result (can be 3 or 4)
|
|
// 4-channels require more memory, but a bit faster
|
|
explicit FGDStatModel(int out_cn = 3);
|
|
explicit FGDStatModel(const cv::gpu::GpuMat& firstFrame, const Params& params = Params(), int out_cn = 3);
|
|
|
|
~FGDStatModel();
|
|
|
|
void create(const cv::gpu::GpuMat& firstFrame, const Params& params = Params());
|
|
void release();
|
|
|
|
int update(const cv::gpu::GpuMat& curFrame);
|
|
|
|
//8UC3 or 8UC4 reference background image
|
|
cv::gpu::GpuMat background;
|
|
|
|
//8UC1 foreground image
|
|
cv::gpu::GpuMat foreground;
|
|
|
|
std::vector< std::vector<cv::Point> > foreground_regions;
|
|
|
|
private:
|
|
FGDStatModel(const FGDStatModel&);
|
|
FGDStatModel& operator=(const FGDStatModel&);
|
|
|
|
class Impl;
|
|
std::auto_ptr<Impl> impl_;
|
|
};
|
|
|
|
/**
|
|
* Background Subtractor module. Takes a series of images and returns a sequence of mask (8UC1)
|
|
* images of the same size, where 255 indicates Foreground and 0 represents Background.
|
|
* This class implements an algorithm described in "Visual Tracking of Human Visitors under
|
|
* Variable-Lighting Conditions for a Responsive Audio Art Installation," A. Godbehere,
|
|
* A. Matsukawa, K. Goldberg, American Control Conference, Montreal, June 2012.
|
|
*/
|
|
class CV_EXPORTS GMG_GPU
|
|
{
|
|
public:
|
|
GMG_GPU();
|
|
|
|
/**
|
|
* Validate parameters and set up data structures for appropriate frame size.
|
|
* @param frameSize Input frame size
|
|
* @param min Minimum value taken on by pixels in image sequence. Usually 0
|
|
* @param max Maximum value taken on by pixels in image sequence. e.g. 1.0 or 255
|
|
*/
|
|
void initialize(Size frameSize, float min = 0.0f, float max = 255.0f);
|
|
|
|
/**
|
|
* Performs single-frame background subtraction and builds up a statistical background image
|
|
* model.
|
|
* @param frame Input frame
|
|
* @param fgmask Output mask image representing foreground and background pixels
|
|
* @param stream Stream for the asynchronous version
|
|
*/
|
|
void operator ()(const GpuMat& frame, GpuMat& fgmask, float learningRate = -1.0f, Stream& stream = Stream::Null());
|
|
|
|
//! Releases all inner buffers
|
|
void release();
|
|
|
|
//! Total number of distinct colors to maintain in histogram.
|
|
int maxFeatures;
|
|
|
|
//! Set between 0.0 and 1.0, determines how quickly features are "forgotten" from histograms.
|
|
float learningRate;
|
|
|
|
//! Number of frames of video to use to initialize histograms.
|
|
int numInitializationFrames;
|
|
|
|
//! Number of discrete levels in each channel to be used in histograms.
|
|
int quantizationLevels;
|
|
|
|
//! Prior probability that any given pixel is a background pixel. A sensitivity parameter.
|
|
float backgroundPrior;
|
|
|
|
//! Value above which pixel is determined to be FG.
|
|
float decisionThreshold;
|
|
|
|
//! Smoothing radius, in pixels, for cleaning up FG image.
|
|
int smoothingRadius;
|
|
|
|
//! Perform background model update.
|
|
bool updateBackgroundModel;
|
|
|
|
private:
|
|
float maxVal_, minVal_;
|
|
|
|
Size frameSize_;
|
|
|
|
int frameNum_;
|
|
|
|
GpuMat nfeatures_;
|
|
GpuMat colors_;
|
|
GpuMat weights_;
|
|
|
|
Ptr<gpu::Filter> boxFilter_;
|
|
GpuMat buf_;
|
|
};
|
|
|
|
}} // namespace cv { namespace gpu {
|
|
|
|
#endif /* __OPENCV_GPUBGSEGM_HPP__ */
|