mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
387 lines
12 KiB
C++
387 lines
12 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html
|
|
|
|
|
|
#include "precomp.hpp"
|
|
#include "stat.hpp"
|
|
#include <opencv2/core/hal/hal.hpp>
|
|
|
|
namespace cv
|
|
{
|
|
|
|
template<typename _Tp, typename _Rt>
|
|
void batchDistL1_(const _Tp* src1, const _Tp* src2, size_t step2,
|
|
int nvecs, int len, _Rt* dist, const uchar* mask)
|
|
{
|
|
step2 /= sizeof(src2[0]);
|
|
if( !mask )
|
|
{
|
|
for( int i = 0; i < nvecs; i++ )
|
|
dist[i] = normL1<_Tp, _Rt>(src1, src2 + step2*i, len);
|
|
}
|
|
else
|
|
{
|
|
_Rt val0 = std::numeric_limits<_Rt>::max();
|
|
for( int i = 0; i < nvecs; i++ )
|
|
dist[i] = mask[i] ? normL1<_Tp, _Rt>(src1, src2 + step2*i, len) : val0;
|
|
}
|
|
}
|
|
|
|
template<typename _Tp, typename _Rt>
|
|
void batchDistL2Sqr_(const _Tp* src1, const _Tp* src2, size_t step2,
|
|
int nvecs, int len, _Rt* dist, const uchar* mask)
|
|
{
|
|
step2 /= sizeof(src2[0]);
|
|
if( !mask )
|
|
{
|
|
for( int i = 0; i < nvecs; i++ )
|
|
dist[i] = normL2Sqr<_Tp, _Rt>(src1, src2 + step2*i, len);
|
|
}
|
|
else
|
|
{
|
|
_Rt val0 = std::numeric_limits<_Rt>::max();
|
|
for( int i = 0; i < nvecs; i++ )
|
|
dist[i] = mask[i] ? normL2Sqr<_Tp, _Rt>(src1, src2 + step2*i, len) : val0;
|
|
}
|
|
}
|
|
|
|
template<>
|
|
void batchDistL2Sqr_(const float* src1, const float* src2, size_t step2,
|
|
int nvecs, int len, float* dist, const uchar* mask)
|
|
{
|
|
step2 /= sizeof(src2[0]);
|
|
if( !mask )
|
|
{
|
|
for( int i = 0; i < nvecs; i++ )
|
|
dist[i] = hal::normL2Sqr_(src1, src2 + step2*i, len);
|
|
}
|
|
else
|
|
{
|
|
float val0 = std::numeric_limits<float>::max();
|
|
for( int i = 0; i < nvecs; i++ )
|
|
dist[i] = mask[i] ? hal::normL2Sqr_(src1, src2 + step2*i, len) : val0;
|
|
}
|
|
}
|
|
|
|
template<typename _Tp, typename _Rt>
|
|
void batchDistL2_(const _Tp* src1, const _Tp* src2, size_t step2,
|
|
int nvecs, int len, _Rt* dist, const uchar* mask)
|
|
{
|
|
step2 /= sizeof(src2[0]);
|
|
if( !mask )
|
|
{
|
|
for( int i = 0; i < nvecs; i++ )
|
|
dist[i] = std::sqrt(normL2Sqr<_Tp, _Rt>(src1, src2 + step2*i, len));
|
|
}
|
|
else
|
|
{
|
|
_Rt val0 = std::numeric_limits<_Rt>::max();
|
|
for( int i = 0; i < nvecs; i++ )
|
|
dist[i] = mask[i] ? std::sqrt(normL2Sqr<_Tp, _Rt>(src1, src2 + step2*i, len)) : val0;
|
|
}
|
|
}
|
|
|
|
template<>
|
|
void batchDistL2_(const float* src1, const float* src2, size_t step2,
|
|
int nvecs, int len, float* dist, const uchar* mask)
|
|
{
|
|
step2 /= sizeof(src2[0]);
|
|
if( !mask )
|
|
{
|
|
for( int i = 0; i < nvecs; i++ )
|
|
dist[i] = std::sqrt(hal::normL2Sqr_(src1, src2 + step2*i, len));
|
|
}
|
|
else
|
|
{
|
|
float val0 = std::numeric_limits<float>::max();
|
|
for( int i = 0; i < nvecs; i++ )
|
|
dist[i] = mask[i] ? std::sqrt(hal::normL2Sqr_(src1, src2 + step2*i, len)) : val0;
|
|
}
|
|
}
|
|
|
|
static void batchDistHamming(const uchar* src1, const uchar* src2, size_t step2,
|
|
int nvecs, int len, int* dist, const uchar* mask)
|
|
{
|
|
step2 /= sizeof(src2[0]);
|
|
if( !mask )
|
|
{
|
|
for( int i = 0; i < nvecs; i++ )
|
|
dist[i] = hal::normHamming(src1, src2 + step2*i, len);
|
|
}
|
|
else
|
|
{
|
|
int val0 = INT_MAX;
|
|
for( int i = 0; i < nvecs; i++ )
|
|
{
|
|
if (mask[i])
|
|
dist[i] = hal::normHamming(src1, src2 + step2*i, len);
|
|
else
|
|
dist[i] = val0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void batchDistHamming2(const uchar* src1, const uchar* src2, size_t step2,
|
|
int nvecs, int len, int* dist, const uchar* mask)
|
|
{
|
|
step2 /= sizeof(src2[0]);
|
|
if( !mask )
|
|
{
|
|
for( int i = 0; i < nvecs; i++ )
|
|
dist[i] = hal::normHamming(src1, src2 + step2*i, len, 2);
|
|
}
|
|
else
|
|
{
|
|
int val0 = INT_MAX;
|
|
for( int i = 0; i < nvecs; i++ )
|
|
{
|
|
if (mask[i])
|
|
dist[i] = hal::normHamming(src1, src2 + step2*i, len, 2);
|
|
else
|
|
dist[i] = val0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void batchDistL1_8u32s(const uchar* src1, const uchar* src2, size_t step2,
|
|
int nvecs, int len, int* dist, const uchar* mask)
|
|
{
|
|
batchDistL1_<uchar, int>(src1, src2, step2, nvecs, len, dist, mask);
|
|
}
|
|
|
|
static void batchDistL1_8u32f(const uchar* src1, const uchar* src2, size_t step2,
|
|
int nvecs, int len, float* dist, const uchar* mask)
|
|
{
|
|
batchDistL1_<uchar, float>(src1, src2, step2, nvecs, len, dist, mask);
|
|
}
|
|
|
|
static void batchDistL2Sqr_8u32s(const uchar* src1, const uchar* src2, size_t step2,
|
|
int nvecs, int len, int* dist, const uchar* mask)
|
|
{
|
|
batchDistL2Sqr_<uchar, int>(src1, src2, step2, nvecs, len, dist, mask);
|
|
}
|
|
|
|
static void batchDistL2Sqr_8u32f(const uchar* src1, const uchar* src2, size_t step2,
|
|
int nvecs, int len, float* dist, const uchar* mask)
|
|
{
|
|
batchDistL2Sqr_<uchar, float>(src1, src2, step2, nvecs, len, dist, mask);
|
|
}
|
|
|
|
static void batchDistL2_8u32f(const uchar* src1, const uchar* src2, size_t step2,
|
|
int nvecs, int len, float* dist, const uchar* mask)
|
|
{
|
|
batchDistL2_<uchar, float>(src1, src2, step2, nvecs, len, dist, mask);
|
|
}
|
|
|
|
static void batchDistL1_32f(const float* src1, const float* src2, size_t step2,
|
|
int nvecs, int len, float* dist, const uchar* mask)
|
|
{
|
|
batchDistL1_<float, float>(src1, src2, step2, nvecs, len, dist, mask);
|
|
}
|
|
|
|
static void batchDistL2Sqr_32f(const float* src1, const float* src2, size_t step2,
|
|
int nvecs, int len, float* dist, const uchar* mask)
|
|
{
|
|
batchDistL2Sqr_<float, float>(src1, src2, step2, nvecs, len, dist, mask);
|
|
}
|
|
|
|
static void batchDistL2_32f(const float* src1, const float* src2, size_t step2,
|
|
int nvecs, int len, float* dist, const uchar* mask)
|
|
{
|
|
batchDistL2_<float, float>(src1, src2, step2, nvecs, len, dist, mask);
|
|
}
|
|
|
|
typedef void (*BatchDistFunc)(const uchar* src1, const uchar* src2, size_t step2,
|
|
int nvecs, int len, uchar* dist, const uchar* mask);
|
|
|
|
|
|
struct BatchDistInvoker : public ParallelLoopBody
|
|
{
|
|
BatchDistInvoker( const Mat& _src1, const Mat& _src2,
|
|
Mat& _dist, Mat& _nidx, int _K,
|
|
const Mat& _mask, int _update,
|
|
BatchDistFunc _func)
|
|
{
|
|
src1 = &_src1;
|
|
src2 = &_src2;
|
|
dist = &_dist;
|
|
nidx = &_nidx;
|
|
K = _K;
|
|
mask = &_mask;
|
|
update = _update;
|
|
func = _func;
|
|
}
|
|
|
|
void operator()(const Range& range) const CV_OVERRIDE
|
|
{
|
|
AutoBuffer<int> buf(src2->rows);
|
|
int* bufptr = buf.data();
|
|
|
|
for( int i = range.start; i < range.end; i++ )
|
|
{
|
|
func(src1->ptr(i), src2->ptr(), src2->step, src2->rows, src2->cols,
|
|
K > 0 ? (uchar*)bufptr : dist->ptr(i), mask->data ? mask->ptr(i) : 0);
|
|
|
|
if( K > 0 )
|
|
{
|
|
int* nidxptr = nidx->ptr<int>(i);
|
|
// since positive float's can be compared just like int's,
|
|
// we handle both CV_32S and CV_32F cases with a single branch
|
|
int* distptr = (int*)dist->ptr(i);
|
|
|
|
int j, k;
|
|
|
|
for( j = 0; j < src2->rows; j++ )
|
|
{
|
|
int d = bufptr[j];
|
|
if( d < distptr[K-1] )
|
|
{
|
|
for( k = K-2; k >= 0 && distptr[k] > d; k-- )
|
|
{
|
|
nidxptr[k+1] = nidxptr[k];
|
|
distptr[k+1] = distptr[k];
|
|
}
|
|
nidxptr[k+1] = j + update;
|
|
distptr[k+1] = d;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
const Mat *src1;
|
|
const Mat *src2;
|
|
Mat *dist;
|
|
Mat *nidx;
|
|
const Mat *mask;
|
|
int K;
|
|
int update;
|
|
BatchDistFunc func;
|
|
};
|
|
|
|
}
|
|
|
|
void cv::batchDistance( InputArray _src1, InputArray _src2,
|
|
OutputArray _dist, int dtype, OutputArray _nidx,
|
|
int normType, int K, InputArray _mask,
|
|
int update, bool crosscheck )
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
Mat src1 = _src1.getMat(), src2 = _src2.getMat(), mask = _mask.getMat();
|
|
int type = src1.type();
|
|
CV_Assert( type == src2.type() && src1.cols == src2.cols &&
|
|
(type == CV_32F || type == CV_8U));
|
|
CV_Assert( _nidx.needed() == (K > 0) );
|
|
|
|
if( dtype == -1 )
|
|
{
|
|
dtype = normType == NORM_HAMMING || normType == NORM_HAMMING2 ? CV_32S : CV_32F;
|
|
}
|
|
CV_Assert( (type == CV_8U && dtype == CV_32S) || dtype == CV_32F);
|
|
|
|
K = std::min(K, src2.rows);
|
|
|
|
_dist.create(src1.rows, (K > 0 ? K : src2.rows), dtype);
|
|
Mat dist = _dist.getMat(), nidx;
|
|
if( _nidx.needed() )
|
|
{
|
|
_nidx.create(dist.size(), CV_32S);
|
|
nidx = _nidx.getMat();
|
|
}
|
|
|
|
if( update == 0 && K > 0 )
|
|
{
|
|
dist = Scalar::all(dtype == CV_32S ? (double)INT_MAX : (double)FLT_MAX);
|
|
nidx = Scalar::all(-1);
|
|
}
|
|
|
|
|
|
if( crosscheck )
|
|
{
|
|
CV_Assert( K == 1 && update == 0 && mask.empty() );
|
|
CV_Assert(!nidx.empty());
|
|
Mat tdist, tidx, sdist, sidx;
|
|
batchDistance(src2, src1, tdist, dtype, tidx, normType, K, mask, 0, false);
|
|
batchDistance(src1, src2, sdist, dtype, sidx, normType, K, mask, 0, false);
|
|
|
|
// if an idx-th element from src1 appeared to be the nearest to i-th element of src2,
|
|
// we update the minimum mutual distance between idx-th element of src1 and the whole src2 set.
|
|
// As a result, if nidx[idx] = i*, it means that idx-th element of src1 is the nearest
|
|
// to i*-th element of src2 and i*-th element of src2 is the closest to idx-th element of src1.
|
|
// If nidx[idx] = -1, it means that there is no such ideal couple for it in src2.
|
|
// This O(2N) procedure is called cross-check and it helps to eliminate some false matches.
|
|
if( dtype == CV_32S )
|
|
{
|
|
for( int i = 0; i < tdist.rows; i++ )
|
|
{
|
|
int idx = tidx.at<int>(i);
|
|
int d = tdist.at<int>(i), d0 = dist.at<int>(idx);
|
|
if( d < d0 )
|
|
{
|
|
dist.at<int>(idx) = d;
|
|
nidx.at<int>(idx) = i + update;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for( int i = 0; i < tdist.rows; i++ )
|
|
{
|
|
int idx = tidx.at<int>(i);
|
|
float d = tdist.at<float>(i), d0 = dist.at<float>(idx);
|
|
if( d < d0 )
|
|
{
|
|
dist.at<float>(idx) = d;
|
|
nidx.at<int>(idx) = i + update;
|
|
}
|
|
}
|
|
}
|
|
for( int i = 0; i < sdist.rows; i++ )
|
|
{
|
|
if( tidx.at<int>(sidx.at<int>(i)) != i )
|
|
{
|
|
nidx.at<int>(i) = -1;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
BatchDistFunc func = 0;
|
|
if( type == CV_8U )
|
|
{
|
|
if( normType == NORM_L1 && dtype == CV_32S )
|
|
func = (BatchDistFunc)batchDistL1_8u32s;
|
|
else if( normType == NORM_L1 && dtype == CV_32F )
|
|
func = (BatchDistFunc)batchDistL1_8u32f;
|
|
else if( normType == NORM_L2SQR && dtype == CV_32S )
|
|
func = (BatchDistFunc)batchDistL2Sqr_8u32s;
|
|
else if( normType == NORM_L2SQR && dtype == CV_32F )
|
|
func = (BatchDistFunc)batchDistL2Sqr_8u32f;
|
|
else if( normType == NORM_L2 && dtype == CV_32F )
|
|
func = (BatchDistFunc)batchDistL2_8u32f;
|
|
else if( normType == NORM_HAMMING && dtype == CV_32S )
|
|
func = (BatchDistFunc)batchDistHamming;
|
|
else if( normType == NORM_HAMMING2 && dtype == CV_32S )
|
|
func = (BatchDistFunc)batchDistHamming2;
|
|
}
|
|
else if( type == CV_32F && dtype == CV_32F )
|
|
{
|
|
if( normType == NORM_L1 )
|
|
func = (BatchDistFunc)batchDistL1_32f;
|
|
else if( normType == NORM_L2SQR )
|
|
func = (BatchDistFunc)batchDistL2Sqr_32f;
|
|
else if( normType == NORM_L2 )
|
|
func = (BatchDistFunc)batchDistL2_32f;
|
|
}
|
|
|
|
if( func == 0 )
|
|
CV_Error_(CV_StsUnsupportedFormat,
|
|
("The combination of type=%d, dtype=%d and normType=%d is not supported",
|
|
type, dtype, normType));
|
|
|
|
parallel_for_(Range(0, src1.rows),
|
|
BatchDistInvoker(src1, src2, dist, nidx, K, mask, update, func));
|
|
}
|