mirror of
https://github.com/opencv/opencv.git
synced 2024-12-13 16:09:23 +08:00
34d359fe03
Add DNN-based face detection and face recognition into modules/objdetect * Add DNN-based face detector impl and interface * Add a sample for DNN-based face detector * add recog * add notes * move samples from samples/cpp to samples/dnn * add documentation for dnn_face * add set/get methods for input size, nms & score threshold and topk * remove the DNN prefix from the face detector and face recognizer * remove default values in the constructor of impl * regenerate priors after setting input size * two filenames for readnet * Update face.hpp * Update face_recognize.cpp * Update face_match.cpp * Update face.hpp * Update face_recognize.cpp * Update face_match.cpp * Update face_recognize.cpp * Update dnn_face.markdown * Update dnn_face.markdown * Update face.hpp * Update dnn_face.markdown * add regression test for face detection * remove underscore prefix; fix warnings * add reference & acknowledgement for face detection * Update dnn_face.markdown * Update dnn_face.markdown * Update ts.hpp * Update test_face.cpp * Update face_match.cpp * fix a compile error for python interface; add python examples for face detection and recognition * Major changes for Vadim's comments: * Replace class name FaceDetector with FaceDetectorYN in related failes * Declare local mat before loop in modules/objdetect/src/face_detect.cpp * Make input image and save flag optional in samples/dnn/face_detect(.cpp, .py) * Add camera support in samples/dnn/face_detect(.cpp, .py) * correct file paths for regression test * fix convertion warnings; remove extra spaces * update face_recog * Update dnn_face.markdown * Fix warnings and errors for the default CI reports: * Remove trailing white spaces and extra new lines. * Fix convertion warnings for windows and iOS. * Add braces around initialization of subobjects. * Fix warnings and errors for the default CI systems: * Add prefix 'FR_' for each value name in enum DisType to solve the redefinition error for iOS compilation; Modify other code accordingly * Add bookmark '#tutorial_dnn_face' to solve warnings from doxygen * Correct documentations to solve warnings from doxygen * update FaceRecognizerSF * Fix the error for CI to find ONNX models correctly * add suffix f to float assignments * add backend & target options for initializing face recognizer * add checkeq for checking input size and preset size * update test and threshold * changes in response to alalek's comments: * fix typos in samples/dnn/face_match.py * import numpy before importing cv2 * add documentation to .setInputSize() * remove extra include in face_recognize.cpp * fix some bugs * Update dnn_face.markdown * update thresholds; remove useless code * add time suffix to YuNet filename in test * objdetect: update test code
101 lines
3.9 KiB
Python
101 lines
3.9 KiB
Python
import argparse
|
|
|
|
import numpy as np
|
|
import cv2 as cv
|
|
|
|
def str2bool(v):
|
|
if v.lower() in ['on', 'yes', 'true', 'y', 't']:
|
|
return True
|
|
elif v.lower() in ['off', 'no', 'false', 'n', 'f']:
|
|
return False
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--input', '-i', type=str, help='Path to the input image.')
|
|
parser.add_argument('--model', '-m', type=str, default='yunet.onnx', help='Path to the model. Download the model at https://github.com/ShiqiYu/libfacedetection.train/tree/master/tasks/task1/onnx.')
|
|
parser.add_argument('--score_threshold', type=float, default=0.9, help='Filtering out faces of score < score_threshold.')
|
|
parser.add_argument('--nms_threshold', type=float, default=0.3, help='Suppress bounding boxes of iou >= nms_threshold.')
|
|
parser.add_argument('--top_k', type=int, default=5000, help='Keep top_k bounding boxes before NMS.')
|
|
parser.add_argument('--save', '-s', type=str2bool, default=False, help='Set true to save results. This flag is invalid when using camera.')
|
|
parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Set true to open a window for result visualization. This flag is invalid when using camera.')
|
|
args = parser.parse_args()
|
|
|
|
def visualize(input, faces, thickness=2):
|
|
output = input.copy()
|
|
if faces[1] is not None:
|
|
for idx, face in enumerate(faces[1]):
|
|
print('Face {}, top-left coordinates: ({:.0f}, {:.0f}), box width: {:.0f}, box height {:.0f}, score: {:.2f}'.format(idx, face[0], face[1], face[2], face[3], face[-1]))
|
|
|
|
coords = face[:-1].astype(np.int32)
|
|
cv.rectangle(output, (coords[0], coords[1]), (coords[0]+coords[2], coords[1]+coords[3]), (0, 255, 0), 2)
|
|
cv.circle(output, (coords[4], coords[5]), 2, (255, 0, 0), 2)
|
|
cv.circle(output, (coords[6], coords[7]), 2, (0, 0, 255), 2)
|
|
cv.circle(output, (coords[8], coords[9]), 2, (0, 255, 0), 2)
|
|
cv.circle(output, (coords[10], coords[11]), 2, (255, 0, 255), 2)
|
|
cv.circle(output, (coords[12], coords[13]), 2, (0, 255, 255), 2)
|
|
return output
|
|
|
|
if __name__ == '__main__':
|
|
|
|
# Instantiate FaceDetectorYN
|
|
detector = cv.FaceDetectorYN.create(
|
|
args.model,
|
|
"",
|
|
(320, 320),
|
|
args.score_threshold,
|
|
args.nms_threshold,
|
|
args.top_k
|
|
)
|
|
|
|
# If input is an image
|
|
if args.input is not None:
|
|
image = cv.imread(args.input)
|
|
|
|
# Set input size before inference
|
|
detector.setInputSize((image.shape[1], image.shape[0]))
|
|
|
|
# Inference
|
|
faces = detector.detect(image)
|
|
|
|
# Draw results on the input image
|
|
result = visualize(image, faces)
|
|
|
|
# Save results if save is true
|
|
if args.save:
|
|
print('Resutls saved to result.jpg\n')
|
|
cv.imwrite('result.jpg', result)
|
|
|
|
# Visualize results in a new window
|
|
if args.vis:
|
|
cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
|
|
cv.imshow(args.input, result)
|
|
cv.waitKey(0)
|
|
else: # Omit input to call default camera
|
|
deviceId = 0
|
|
cap = cv.VideoCapture(deviceId)
|
|
frameWidth = int(cap.get(cv.CAP_PROP_FRAME_WIDTH))
|
|
frameHeight = int(cap.get(cv.CAP_PROP_FRAME_HEIGHT))
|
|
detector.setInputSize([frameWidth, frameHeight])
|
|
|
|
tm = cv.TickMeter()
|
|
while cv.waitKey(1) < 0:
|
|
hasFrame, frame = cap.read()
|
|
if not hasFrame:
|
|
print('No frames grabbed!')
|
|
break
|
|
|
|
# Inference
|
|
tm.start()
|
|
faces = detector.detect(frame) # faces is a tuple
|
|
tm.stop()
|
|
|
|
# Draw results on the input image
|
|
frame = visualize(frame, faces)
|
|
|
|
cv.putText(frame, 'FPS: {}'.format(tm.getFPS()), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0))
|
|
|
|
# Visualize results in a new Window
|
|
cv.imshow('Live', frame)
|
|
|
|
tm.reset() |