opencv/modules/objdetect/src/latentsvm.cpp
Roman Donchenko 29b13ec1de Replaced most of the usages of parallel_for with that of parallel_for_.
This should allow many algorithms to take advantage of more parallelization
technologies.
2013-05-31 12:22:04 +04:00

645 lines
22 KiB
C++

#include "precomp.hpp"
#include "_latentsvm.h"
#include "_lsvm_matching.h"
/*
// Transformation filter displacement from the block space
// to the space of pixels at the initial image
//
// API
// int convertPoints(int countLevel, CvPoint *points, int *levels,
CvPoint **partsDisplacement, int kPoints, int n);
// INPUT
// countLevel - the number of levels in the feature pyramid
// points - the set of root filter positions (in the block space)
// levels - the set of levels
// partsDisplacement - displacement of part filters (in the block space)
// kPoints - number of root filter positions
// n - number of part filters
// initialImageLevel - level that contains features for initial image
// maxXBorder - the largest root filter size (X-direction)
// maxYBorder - the largest root filter size (Y-direction)
// OUTPUT
// points - the set of root filter positions (in the space of pixels)
// partsDisplacement - displacement of part filters (in the space of pixels)
// RESULT
// Error status
*/
int convertPoints(int /*countLevel*/, int lambda,
int initialImageLevel,
CvPoint *points, int *levels,
CvPoint **partsDisplacement, int kPoints, int n,
int maxXBorder,
int maxYBorder)
{
int i, j, bx, by;
float step, scale;
step = powf( 2.0f, 1.0f / ((float)lambda) );
computeBorderSize(maxXBorder, maxYBorder, &bx, &by);
for (i = 0; i < kPoints; i++)
{
// scaling factor for root filter
scale = SIDE_LENGTH * powf(step, (float)(levels[i] - initialImageLevel));
points[i].x = (int)((points[i].x - bx + 1) * scale);
points[i].y = (int)((points[i].y - by + 1) * scale);
// scaling factor for part filters
scale = SIDE_LENGTH * powf(step, (float)(levels[i] - lambda - initialImageLevel));
for (j = 0; j < n; j++)
{
partsDisplacement[i][j].x = (int)((partsDisplacement[i][j].x -
2 * bx + 1) * scale);
partsDisplacement[i][j].y = (int)((partsDisplacement[i][j].y -
2 * by + 1) * scale);
}
}
return LATENT_SVM_OK;
}
/*
// Elimination boxes that are outside the image boudaries
//
// API
// int clippingBoxes(int width, int height,
CvPoint *points, int kPoints);
// INPUT
// width - image wediht
// height - image heigth
// points - a set of points (coordinates of top left or
bottom right corners)
// kPoints - points number
// OUTPUT
// points - updated points (if coordinates less than zero then
set zero coordinate, if coordinates more than image
size then set coordinates equal image size)
// RESULT
// Error status
*/
int clippingBoxes(int width, int height,
CvPoint *points, int kPoints)
{
int i;
for (i = 0; i < kPoints; i++)
{
if (points[i].x > width - 1)
{
points[i].x = width - 1;
}
if (points[i].x < 0)
{
points[i].x = 0;
}
if (points[i].y > height - 1)
{
points[i].y = height - 1;
}
if (points[i].y < 0)
{
points[i].y = 0;
}
}
return LATENT_SVM_OK;
}
/*
// Creation feature pyramid with nullable border
//
// API
// featurePyramid* createFeaturePyramidWithBorder(const IplImage *image,
int maxXBorder, int maxYBorder);
// INPUT
// image - initial image
// maxXBorder - the largest root filter size (X-direction)
// maxYBorder - the largest root filter size (Y-direction)
// OUTPUT
// RESULT
// Feature pyramid with nullable border
*/
CvLSVMFeaturePyramid* createFeaturePyramidWithBorder(IplImage *image,
int maxXBorder, int maxYBorder)
{
int opResult;
int bx, by;
int level;
CvLSVMFeaturePyramid *H;
// Obtaining feature pyramid
opResult = getFeaturePyramid(image, &H);
if (opResult != LATENT_SVM_OK)
{
freeFeaturePyramidObject(&H);
return NULL;
} /* if (opResult != LATENT_SVM_OK) */
// Addition nullable border for each feature map
// the size of the border for root filters
computeBorderSize(maxXBorder, maxYBorder, &bx, &by);
for (level = 0; level < H->numLevels; level++)
{
addNullableBorder(H->pyramid[level], bx, by);
}
return H;
}
/*
// Computation of the root filter displacement and values of score function
//
// API
// int searchObject(const featurePyramid *H, const filterObject **all_F, int n,
float b,
int maxXBorder,
int maxYBorder,
CvPoint **points, int **levels, int *kPoints, float *score,
CvPoint ***partsDisplacement);
// INPUT
// image - initial image for searhing object
// all_F - the set of filters (the first element is root filter,
other elements - part filters)
// n - the number of part filters
// b - linear term of the score function
// maxXBorder - the largest root filter size (X-direction)
// maxYBorder - the largest root filter size (Y-direction)
// OUTPUT
// points - positions (x, y) of the upper-left corner
of root filter frame
// levels - levels that correspond to each position
// kPoints - number of positions
// score - value of the score function
// partsDisplacement - part filters displacement for each position
of the root filter
// RESULT
// Error status
*/
int searchObject(const CvLSVMFeaturePyramid *H, const CvLSVMFilterObject **all_F,
int n, float b,
int maxXBorder,
int maxYBorder,
CvPoint **points, int **levels, int *kPoints, float *score,
CvPoint ***partsDisplacement)
{
int opResult;
// Matching
opResult = maxFunctionalScore(all_F, n, H, b, maxXBorder, maxYBorder,
score, points, levels,
kPoints, partsDisplacement);
if (opResult != LATENT_SVM_OK)
{
return LATENT_SVM_SEARCH_OBJECT_FAILED;
}
// Transformation filter displacement from the block space
// to the space of pixels at the initial image
// that settles at the level number LAMBDA
convertPoints(H->numLevels, LAMBDA, LAMBDA, (*points),
(*levels), (*partsDisplacement), (*kPoints), n,
maxXBorder, maxYBorder);
return LATENT_SVM_OK;
}
/*
// Computation right bottom corners coordinates of bounding boxes
//
// API
// int estimateBoxes(CvPoint *points, int *levels, int kPoints,
int sizeX, int sizeY, CvPoint **oppositePoints);
// INPUT
// points - left top corners coordinates of bounding boxes
// levels - levels of feature pyramid where points were found
// (sizeX, sizeY) - size of root filter
// OUTPUT
// oppositePoins - right bottom corners coordinates of bounding boxes
// RESULT
// Error status
*/
static int estimateBoxes(CvPoint *points, int *levels, int kPoints,
int sizeX, int sizeY, CvPoint **oppositePoints)
{
int i;
float step;
step = powf( 2.0f, 1.0f / ((float)(LAMBDA)));
*oppositePoints = (CvPoint *)malloc(sizeof(CvPoint) * kPoints);
for (i = 0; i < kPoints; i++)
{
getOppositePoint(points[i], sizeX, sizeY, step, levels[i] - LAMBDA, &((*oppositePoints)[i]));
}
return LATENT_SVM_OK;
}
/*
// Computation of the root filter displacement and values of score function
//
// API
// int searchObjectThreshold(const featurePyramid *H,
const filterObject **all_F, int n,
float b,
int maxXBorder, int maxYBorder,
float scoreThreshold,
CvPoint **points, int **levels, int *kPoints,
float **score, CvPoint ***partsDisplacement);
// INPUT
// H - feature pyramid
// all_F - the set of filters (the first element is root filter,
other elements - part filters)
// n - the number of part filters
// b - linear term of the score function
// maxXBorder - the largest root filter size (X-direction)
// maxYBorder - the largest root filter size (Y-direction)
// scoreThreshold - score threshold
// OUTPUT
// points - positions (x, y) of the upper-left corner
of root filter frame
// levels - levels that correspond to each position
// kPoints - number of positions
// score - values of the score function
// partsDisplacement - part filters displacement for each position
of the root filter
// RESULT
// Error status
*/
int searchObjectThreshold(const CvLSVMFeaturePyramid *H,
const CvLSVMFilterObject **all_F, int n,
float b,
int maxXBorder, int maxYBorder,
float scoreThreshold,
CvPoint **points, int **levels, int *kPoints,
float **score, CvPoint ***partsDisplacement,
int numThreads)
{
int opResult;
// Matching
#ifdef HAVE_TBB
if (numThreads <= 0)
{
opResult = LATENT_SVM_TBB_NUMTHREADS_NOT_CORRECT;
return opResult;
}
opResult = tbbThresholdFunctionalScore(all_F, n, H, b, maxXBorder, maxYBorder,
scoreThreshold, numThreads, score,
points, levels, kPoints,
partsDisplacement);
#else
opResult = thresholdFunctionalScore(all_F, n, H, b,
maxXBorder, maxYBorder,
scoreThreshold,
score, points, levels,
kPoints, partsDisplacement);
(void)numThreads;
#endif
if (opResult != LATENT_SVM_OK)
{
return LATENT_SVM_SEARCH_OBJECT_FAILED;
}
// Transformation filter displacement from the block space
// to the space of pixels at the initial image
// that settles at the level number LAMBDA
convertPoints(H->numLevels, LAMBDA, LAMBDA, (*points),
(*levels), (*partsDisplacement), (*kPoints), n,
maxXBorder, maxYBorder);
return LATENT_SVM_OK;
}
/*
// Compute opposite point for filter box
//
// API
// int getOppositePoint(CvPoint point,
int sizeX, int sizeY,
float step, int degree,
CvPoint *oppositePoint);
// INPUT
// point - coordinates of filter top left corner
(in the space of pixels)
// (sizeX, sizeY) - filter dimension in the block space
// step - scaling factor
// degree - degree of the scaling factor
// OUTPUT
// oppositePoint - coordinates of filter bottom corner
(in the space of pixels)
// RESULT
// Error status
*/
int getOppositePoint(CvPoint point,
int sizeX, int sizeY,
float step, int degree,
CvPoint *oppositePoint)
{
float scale;
scale = SIDE_LENGTH * powf(step, (float)degree);
oppositePoint->x = (int)(point.x + sizeX * scale);
oppositePoint->y = (int)(point.y + sizeY * scale);
return LATENT_SVM_OK;
}
/*
// Drawing root filter boxes
//
// API
// int showRootFilterBoxes(const IplImage *image,
const filterObject *filter,
CvPoint *points, int *levels, int kPoints,
CvScalar color, int thickness,
int line_type, int shift);
// INPUT
// image - initial image
// filter - root filter object
// points - a set of points
// levels - levels of feature pyramid
// kPoints - number of points
// color - line color for each box
// thickness - line thickness
// line_type - line type
// shift - shift
// OUTPUT
// window contained initial image and filter boxes
// RESULT
// Error status
*/
int showRootFilterBoxes(IplImage *image,
const CvLSVMFilterObject *filter,
CvPoint *points, int *levels, int kPoints,
CvScalar color, int thickness,
int line_type, int shift)
{
int i;
float step;
CvPoint oppositePoint;
step = powf( 2.0f, 1.0f / ((float)LAMBDA));
for (i = 0; i < kPoints; i++)
{
// Drawing rectangle for filter
getOppositePoint(points[i], filter->sizeX, filter->sizeY,
step, levels[i] - LAMBDA, &oppositePoint);
cvRectangle(image, points[i], oppositePoint,
color, thickness, line_type, shift);
}
#ifdef HAVE_OPENCV_HIGHGUI
cvShowImage("Initial image", image);
#endif
return LATENT_SVM_OK;
}
/*
// Drawing part filter boxes
//
// API
// int showPartFilterBoxes(const IplImage *image,
const filterObject *filter,
CvPoint *points, int *levels, int kPoints,
CvScalar color, int thickness,
int line_type, int shift);
// INPUT
// image - initial image
// filters - a set of part filters
// n - number of part filters
// partsDisplacement - a set of points
// levels - levels of feature pyramid
// kPoints - number of foot filter positions
// color - line color for each box
// thickness - line thickness
// line_type - line type
// shift - shift
// OUTPUT
// window contained initial image and filter boxes
// RESULT
// Error status
*/
int showPartFilterBoxes(IplImage *image,
const CvLSVMFilterObject **filters,
int n, CvPoint **partsDisplacement,
int *levels, int kPoints,
CvScalar color, int thickness,
int line_type, int shift)
{
int i, j;
float step;
CvPoint oppositePoint;
step = powf( 2.0f, 1.0f / ((float)LAMBDA));
for (i = 0; i < kPoints; i++)
{
for (j = 0; j < n; j++)
{
// Drawing rectangles for part filters
getOppositePoint(partsDisplacement[i][j],
filters[j + 1]->sizeX, filters[j + 1]->sizeY,
step, levels[i] - 2 * LAMBDA, &oppositePoint);
cvRectangle(image, partsDisplacement[i][j], oppositePoint,
color, thickness, line_type, shift);
}
}
#ifdef HAVE_OPENCV_HIGHGUI
cvShowImage("Initial image", image);
#endif
return LATENT_SVM_OK;
}
/*
// Drawing boxes
//
// API
// int showBoxes(const IplImage *img,
const CvPoint *points, const CvPoint *oppositePoints, int kPoints,
CvScalar color, int thickness, int line_type, int shift);
// INPUT
// img - initial image
// points - top left corner coordinates
// oppositePoints - right bottom corner coordinates
// kPoints - points number
// color - line color for each box
// thickness - line thickness
// line_type - line type
// shift - shift
// OUTPUT
// RESULT
// Error status
*/
int showBoxes(IplImage *img,
const CvPoint *points, const CvPoint *oppositePoints, int kPoints,
CvScalar color, int thickness, int line_type, int shift)
{
int i;
for (i = 0; i < kPoints; i++)
{
cvRectangle(img, points[i], oppositePoints[i],
color, thickness, line_type, shift);
}
#ifdef HAVE_OPENCV_HIGHGUI
cvShowImage("Initial image", img);
#endif
return LATENT_SVM_OK;
}
/*
// Computation maximum filter size for each dimension
//
// API
// int getMaxFilterDims(const filterObject **filters, int kComponents,
const int *kPartFilters,
unsigned int *maxXBorder, unsigned int *maxYBorder);
// INPUT
// filters - a set of filters (at first root filter, then part filters
and etc. for all components)
// kComponents - number of components
// kPartFilters - number of part filters for each component
// OUTPUT
// maxXBorder - maximum of filter size at the horizontal dimension
// maxYBorder - maximum of filter size at the vertical dimension
// RESULT
// Error status
*/
int getMaxFilterDims(const CvLSVMFilterObject **filters, int kComponents,
const int *kPartFilters,
unsigned int *maxXBorder, unsigned int *maxYBorder)
{
int i, componentIndex;
*maxXBorder = filters[0]->sizeX;
*maxYBorder = filters[0]->sizeY;
componentIndex = kPartFilters[0] + 1;
for (i = 1; i < kComponents; i++)
{
if ((unsigned)filters[componentIndex]->sizeX > *maxXBorder)
{
*maxXBorder = filters[componentIndex]->sizeX;
}
if ((unsigned)filters[componentIndex]->sizeY > *maxYBorder)
{
*maxYBorder = filters[componentIndex]->sizeY;
}
componentIndex += (kPartFilters[i] + 1);
}
return LATENT_SVM_OK;
}
/*
// Computation root filters displacement and values of score function
//
// API
// int searchObjectThresholdSomeComponents(const featurePyramid *H,
const filterObject **filters,
int kComponents, const int *kPartFilters,
const float *b, float scoreThreshold,
CvPoint **points, CvPoint **oppPoints,
float **score, int *kPoints);
// INPUT
// H - feature pyramid
// filters - filters (root filter then it's part filters, etc.)
// kComponents - root filters number
// kPartFilters - array of part filters number for each component
// b - array of linear terms
// scoreThreshold - score threshold
// OUTPUT
// points - root filters displacement (top left corners)
// oppPoints - root filters displacement (bottom right corners)
// score - array of score values
// kPoints - number of boxes
// RESULT
// Error status
*/
int searchObjectThresholdSomeComponents(const CvLSVMFeaturePyramid *H,
const CvLSVMFilterObject **filters,
int kComponents, const int *kPartFilters,
const float *b, float scoreThreshold,
CvPoint **points, CvPoint **oppPoints,
float **score, int *kPoints,
int numThreads)
{
//int error = 0;
int i, j, s, f, componentIndex;
unsigned int maxXBorder, maxYBorder;
CvPoint **pointsArr, **oppPointsArr, ***partsDisplacementArr;
float **scoreArr;
int *kPointsArr, **levelsArr;
// Allocation memory
pointsArr = (CvPoint **)malloc(sizeof(CvPoint *) * kComponents);
oppPointsArr = (CvPoint **)malloc(sizeof(CvPoint *) * kComponents);
scoreArr = (float **)malloc(sizeof(float *) * kComponents);
kPointsArr = (int *)malloc(sizeof(int) * kComponents);
levelsArr = (int **)malloc(sizeof(int *) * kComponents);
partsDisplacementArr = (CvPoint ***)malloc(sizeof(CvPoint **) * kComponents);
// Getting maximum filter dimensions
/*error = */getMaxFilterDims(filters, kComponents, kPartFilters, &maxXBorder, &maxYBorder);
componentIndex = 0;
*kPoints = 0;
// For each component perform searching
for (i = 0; i < kComponents; i++)
{
int error = searchObjectThreshold(H, &(filters[componentIndex]), kPartFilters[i],
b[i], maxXBorder, maxYBorder, scoreThreshold,
&(pointsArr[i]), &(levelsArr[i]), &(kPointsArr[i]),
&(scoreArr[i]), &(partsDisplacementArr[i]), numThreads);
if (error != LATENT_SVM_OK)
{
// Release allocated memory
free(pointsArr);
free(oppPointsArr);
free(scoreArr);
free(kPointsArr);
free(levelsArr);
free(partsDisplacementArr);
return LATENT_SVM_SEARCH_OBJECT_FAILED;
}
estimateBoxes(pointsArr[i], levelsArr[i], kPointsArr[i],
filters[componentIndex]->sizeX, filters[componentIndex]->sizeY, &(oppPointsArr[i]));
componentIndex += (kPartFilters[i] + 1);
*kPoints += kPointsArr[i];
}
*points = (CvPoint *)malloc(sizeof(CvPoint) * (*kPoints));
*oppPoints = (CvPoint *)malloc(sizeof(CvPoint) * (*kPoints));
*score = (float *)malloc(sizeof(float) * (*kPoints));
s = 0;
for (i = 0; i < kComponents; i++)
{
f = s + kPointsArr[i];
for (j = s; j < f; j++)
{
(*points)[j].x = pointsArr[i][j - s].x;
(*points)[j].y = pointsArr[i][j - s].y;
(*oppPoints)[j].x = oppPointsArr[i][j - s].x;
(*oppPoints)[j].y = oppPointsArr[i][j - s].y;
(*score)[j] = scoreArr[i][j - s];
}
s = f;
}
// Release allocated memory
for (i = 0; i < kComponents; i++)
{
free(pointsArr[i]);
free(oppPointsArr[i]);
free(scoreArr[i]);
free(levelsArr[i]);
for (j = 0; j < kPointsArr[i]; j++)
{
free(partsDisplacementArr[i][j]);
}
free(partsDisplacementArr[i]);
}
free(pointsArr);
free(oppPointsArr);
free(scoreArr);
free(kPointsArr);
free(levelsArr);
free(partsDisplacementArr);
return LATENT_SVM_OK;
}