mirror of
https://github.com/opencv/opencv.git
synced 2025-01-06 02:08:12 +08:00
194 lines
5.2 KiB
C
194 lines
5.2 KiB
C
/* dgetf2.f -- translated by f2c (version 20061008).
|
|
You must link the resulting object file with libf2c:
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
-- in that order, at the end of the command line, as in
|
|
cc *.o -lf2c -lm
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
*/
|
|
|
|
#include "clapack.h"
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c__1 = 1;
|
|
static doublereal c_b8 = -1.;
|
|
|
|
/* Subroutine */ int dgetf2_(integer *m, integer *n, doublereal *a, integer *
|
|
lda, integer *ipiv, integer *info)
|
|
{
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, i__1, i__2, i__3;
|
|
doublereal d__1;
|
|
|
|
/* Local variables */
|
|
integer i__, j, jp;
|
|
extern /* Subroutine */ int dger_(integer *, integer *, doublereal *,
|
|
doublereal *, integer *, doublereal *, integer *, doublereal *,
|
|
integer *), dscal_(integer *, doublereal *, doublereal *, integer
|
|
*);
|
|
doublereal sfmin;
|
|
extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *,
|
|
doublereal *, integer *);
|
|
extern doublereal dlamch_(char *);
|
|
extern integer idamax_(integer *, doublereal *, integer *);
|
|
extern /* Subroutine */ int xerbla_(char *, integer *);
|
|
|
|
|
|
/* -- LAPACK routine (version 3.2) -- */
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
/* November 2006 */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* Purpose */
|
|
/* ======= */
|
|
|
|
/* DGETF2 computes an LU factorization of a general m-by-n matrix A */
|
|
/* using partial pivoting with row interchanges. */
|
|
|
|
/* The factorization has the form */
|
|
/* A = P * L * U */
|
|
/* where P is a permutation matrix, L is lower triangular with unit */
|
|
/* diagonal elements (lower trapezoidal if m > n), and U is upper */
|
|
/* triangular (upper trapezoidal if m < n). */
|
|
|
|
/* This is the right-looking Level 2 BLAS version of the algorithm. */
|
|
|
|
/* Arguments */
|
|
/* ========= */
|
|
|
|
/* M (input) INTEGER */
|
|
/* The number of rows of the matrix A. M >= 0. */
|
|
|
|
/* N (input) INTEGER */
|
|
/* The number of columns of the matrix A. N >= 0. */
|
|
|
|
/* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
|
|
/* On entry, the m by n matrix to be factored. */
|
|
/* On exit, the factors L and U from the factorization */
|
|
/* A = P*L*U; the unit diagonal elements of L are not stored. */
|
|
|
|
/* LDA (input) INTEGER */
|
|
/* The leading dimension of the array A. LDA >= max(1,M). */
|
|
|
|
/* IPIV (output) INTEGER array, dimension (min(M,N)) */
|
|
/* The pivot indices; for 1 <= i <= min(M,N), row i of the */
|
|
/* matrix was interchanged with row IPIV(i). */
|
|
|
|
/* INFO (output) INTEGER */
|
|
/* = 0: successful exit */
|
|
/* < 0: if INFO = -k, the k-th argument had an illegal value */
|
|
/* > 0: if INFO = k, U(k,k) is exactly zero. The factorization */
|
|
/* has been completed, but the factor U is exactly */
|
|
/* singular, and division by zero will occur if it is used */
|
|
/* to solve a system of equations. */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
/* Test the input parameters. */
|
|
|
|
/* Parameter adjustments */
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1;
|
|
a -= a_offset;
|
|
--ipiv;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
if (*m < 0) {
|
|
*info = -1;
|
|
} else if (*n < 0) {
|
|
*info = -2;
|
|
} else if (*lda < max(1,*m)) {
|
|
*info = -4;
|
|
}
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("DGETF2", &i__1);
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
if (*m == 0 || *n == 0) {
|
|
return 0;
|
|
}
|
|
|
|
/* Compute machine safe minimum */
|
|
|
|
sfmin = dlamch_("S");
|
|
|
|
i__1 = min(*m,*n);
|
|
for (j = 1; j <= i__1; ++j) {
|
|
|
|
/* Find pivot and test for singularity. */
|
|
|
|
i__2 = *m - j + 1;
|
|
jp = j - 1 + idamax_(&i__2, &a[j + j * a_dim1], &c__1);
|
|
ipiv[j] = jp;
|
|
if (a[jp + j * a_dim1] != 0.) {
|
|
|
|
/* Apply the interchange to columns 1:N. */
|
|
|
|
if (jp != j) {
|
|
dswap_(n, &a[j + a_dim1], lda, &a[jp + a_dim1], lda);
|
|
}
|
|
|
|
/* Compute elements J+1:M of J-th column. */
|
|
|
|
if (j < *m) {
|
|
if ((d__1 = a[j + j * a_dim1], abs(d__1)) >= sfmin) {
|
|
i__2 = *m - j;
|
|
d__1 = 1. / a[j + j * a_dim1];
|
|
dscal_(&i__2, &d__1, &a[j + 1 + j * a_dim1], &c__1);
|
|
} else {
|
|
i__2 = *m - j;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
a[j + i__ + j * a_dim1] /= a[j + j * a_dim1];
|
|
/* L20: */
|
|
}
|
|
}
|
|
}
|
|
|
|
} else if (*info == 0) {
|
|
|
|
*info = j;
|
|
}
|
|
|
|
if (j < min(*m,*n)) {
|
|
|
|
/* Update trailing submatrix. */
|
|
|
|
i__2 = *m - j;
|
|
i__3 = *n - j;
|
|
dger_(&i__2, &i__3, &c_b8, &a[j + 1 + j * a_dim1], &c__1, &a[j + (
|
|
j + 1) * a_dim1], lda, &a[j + 1 + (j + 1) * a_dim1], lda);
|
|
}
|
|
/* L10: */
|
|
}
|
|
return 0;
|
|
|
|
/* End of DGETF2 */
|
|
|
|
} /* dgetf2_ */
|