mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
785 lines
40 KiB
Plaintext
785 lines
40 KiB
Plaintext
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or bpied warranties, including, but not limited to, the bpied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#if !defined CUDA_DISABLER
|
|
|
|
#include "internal_shared.hpp"
|
|
#include "opencv2/gpu/device/limits.hpp"
|
|
#include "opencv2/gpu/device/vec_distance.hpp"
|
|
#include "opencv2/gpu/device/datamov_utils.hpp"
|
|
|
|
namespace cv { namespace gpu { namespace device
|
|
{
|
|
namespace bf_match
|
|
{
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
// Reduction
|
|
|
|
template <int BLOCK_SIZE>
|
|
__device__ void findBestMatch(float& bestDistance, int& bestTrainIdx, float* s_distance, int* s_trainIdx)
|
|
{
|
|
s_distance += threadIdx.y * BLOCK_SIZE;
|
|
s_trainIdx += threadIdx.y * BLOCK_SIZE;
|
|
|
|
s_distance[threadIdx.x] = bestDistance;
|
|
s_trainIdx[threadIdx.x] = bestTrainIdx;
|
|
|
|
__syncthreads();
|
|
|
|
reducePredVal<BLOCK_SIZE>(s_distance, bestDistance, s_trainIdx, bestTrainIdx, threadIdx.x, less<volatile float>());
|
|
}
|
|
|
|
template <int BLOCK_SIZE>
|
|
__device__ void findBestMatch(float& bestDistance, int& bestTrainIdx, int& bestImgIdx, float* s_distance, int* s_trainIdx, int* s_imgIdx)
|
|
{
|
|
s_distance += threadIdx.y * BLOCK_SIZE;
|
|
s_trainIdx += threadIdx.y * BLOCK_SIZE;
|
|
s_imgIdx += threadIdx.y * BLOCK_SIZE;
|
|
|
|
s_distance[threadIdx.x] = bestDistance;
|
|
s_trainIdx[threadIdx.x] = bestTrainIdx;
|
|
s_imgIdx [threadIdx.x] = bestImgIdx;
|
|
|
|
__syncthreads();
|
|
|
|
reducePredVal2<BLOCK_SIZE>(s_distance, bestDistance, s_trainIdx, bestTrainIdx, s_imgIdx, bestImgIdx, threadIdx.x, less<volatile float>());
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
// Match Unrolled Cached
|
|
|
|
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename T, typename U>
|
|
__device__ void loadQueryToSmem(int queryIdx, const PtrStepSz<T>& query, U* s_query)
|
|
{
|
|
#pragma unroll
|
|
for (int i = 0; i < MAX_DESC_LEN / BLOCK_SIZE; ++i)
|
|
{
|
|
const int loadX = threadIdx.x + i * BLOCK_SIZE;
|
|
s_query[threadIdx.y * MAX_DESC_LEN + loadX] = loadX < query.cols ? query.ptr(::min(queryIdx, query.rows - 1))[loadX] : 0;
|
|
}
|
|
}
|
|
|
|
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
|
|
__device__ void loopUnrolledCached(int queryIdx, const PtrStepSz<T>& query,volatile int imgIdx, const PtrStepSz<T>& train, const Mask& mask,
|
|
typename Dist::value_type* s_query, typename Dist::value_type* s_train,
|
|
float& bestDistance, int& bestTrainIdx, int& bestImgIdx)
|
|
{
|
|
for (int t = 0, endt = (train.rows + BLOCK_SIZE - 1) / BLOCK_SIZE; t < endt; ++t)
|
|
{
|
|
Dist dist;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < MAX_DESC_LEN / BLOCK_SIZE; ++i)
|
|
{
|
|
const int loadX = threadIdx.x + i * BLOCK_SIZE;
|
|
|
|
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = 0;
|
|
|
|
if (loadX < train.cols)
|
|
{
|
|
T val;
|
|
|
|
ForceGlob<T>::Load(train.ptr(::min(t * BLOCK_SIZE + threadIdx.y, train.rows - 1)), loadX, val);
|
|
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = val;
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
#pragma unroll
|
|
for (int j = 0; j < BLOCK_SIZE; ++j)
|
|
dist.reduceIter(s_query[threadIdx.y * MAX_DESC_LEN + i * BLOCK_SIZE + j], s_train[j * BLOCK_SIZE + threadIdx.x]);
|
|
|
|
__syncthreads();
|
|
}
|
|
|
|
typename Dist::result_type distVal = dist;
|
|
|
|
const int trainIdx = t * BLOCK_SIZE + threadIdx.x;
|
|
|
|
if (queryIdx < query.rows && trainIdx < train.rows && distVal < bestDistance && mask(queryIdx, trainIdx))
|
|
{
|
|
bestImgIdx = imgIdx;
|
|
bestDistance = distVal;
|
|
bestTrainIdx = trainIdx;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
|
|
__global__ void matchUnrolledCached(const PtrStepSz<T> query, const PtrStepSz<T> train, const Mask mask, int* bestTrainIdx, float* bestDistance)
|
|
{
|
|
extern __shared__ int smem[];
|
|
|
|
const int queryIdx = blockIdx.x * BLOCK_SIZE + threadIdx.y;
|
|
|
|
typename Dist::value_type* s_query = (typename Dist::value_type*)(smem);
|
|
typename Dist::value_type* s_train = (typename Dist::value_type*)(smem + BLOCK_SIZE * MAX_DESC_LEN);
|
|
|
|
loadQueryToSmem<BLOCK_SIZE, MAX_DESC_LEN>(queryIdx, query, s_query);
|
|
|
|
float myBestDistance = numeric_limits<float>::max();
|
|
int myBestTrainIdx = -1;
|
|
|
|
loopUnrolledCached<BLOCK_SIZE, MAX_DESC_LEN, Dist>(queryIdx, query, 0, train, mask, s_query, s_train, myBestDistance, myBestTrainIdx, myBestTrainIdx);
|
|
|
|
__syncthreads();
|
|
|
|
float* s_distance = (float*)(smem);
|
|
int* s_trainIdx = (int*)(smem + BLOCK_SIZE * BLOCK_SIZE);
|
|
|
|
findBestMatch<BLOCK_SIZE>(myBestDistance, myBestTrainIdx, s_distance, s_trainIdx);
|
|
|
|
if (queryIdx < query.rows && threadIdx.x == 0)
|
|
{
|
|
bestTrainIdx[queryIdx] = myBestTrainIdx;
|
|
bestDistance[queryIdx] = myBestDistance;
|
|
}
|
|
}
|
|
|
|
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
|
|
void matchUnrolledCached(const PtrStepSz<T>& query, const PtrStepSz<T>& train, const Mask& mask,
|
|
const PtrStepSzi& trainIdx, const PtrStepSzf& distance,
|
|
cudaStream_t stream)
|
|
{
|
|
const dim3 block(BLOCK_SIZE, BLOCK_SIZE);
|
|
const dim3 grid(divUp(query.rows, BLOCK_SIZE));
|
|
|
|
const size_t smemSize = (BLOCK_SIZE * (MAX_DESC_LEN >= BLOCK_SIZE ? MAX_DESC_LEN : BLOCK_SIZE) + BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
|
|
|
|
matchUnrolledCached<BLOCK_SIZE, MAX_DESC_LEN, Dist><<<grid, block, smemSize, stream>>>(query, train, mask, trainIdx.data, distance.data);
|
|
cudaSafeCall( cudaGetLastError() );
|
|
|
|
if (stream == 0)
|
|
cudaSafeCall( cudaDeviceSynchronize() );
|
|
}
|
|
|
|
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
|
|
__global__ void matchUnrolledCached(const PtrStepSz<T> query, const PtrStepSz<T>* trains, int n, const Mask mask,
|
|
int* bestTrainIdx, int* bestImgIdx, float* bestDistance)
|
|
{
|
|
extern __shared__ int smem[];
|
|
|
|
const int queryIdx = blockIdx.x * BLOCK_SIZE + threadIdx.y;
|
|
|
|
typename Dist::value_type* s_query = (typename Dist::value_type*)(smem);
|
|
typename Dist::value_type* s_train = (typename Dist::value_type*)(smem + BLOCK_SIZE * MAX_DESC_LEN);
|
|
|
|
loadQueryToSmem<BLOCK_SIZE, MAX_DESC_LEN>(queryIdx, query, s_query);
|
|
|
|
float myBestDistance = numeric_limits<float>::max();
|
|
int myBestTrainIdx = -1;
|
|
int myBestImgIdx = -1;
|
|
|
|
Mask m = mask;
|
|
|
|
for (int imgIdx = 0; imgIdx < n; ++imgIdx)
|
|
{
|
|
const PtrStepSz<T> train = trains[imgIdx];
|
|
m.next();
|
|
loopUnrolledCached<BLOCK_SIZE, MAX_DESC_LEN, Dist>(queryIdx, query, imgIdx, train, m, s_query, s_train, myBestDistance, myBestTrainIdx, myBestImgIdx);
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
float* s_distance = (float*)(smem);
|
|
int* s_trainIdx = (int*)(smem + BLOCK_SIZE * BLOCK_SIZE);
|
|
int* s_imgIdx = (int*)(smem + 2 * BLOCK_SIZE * BLOCK_SIZE);
|
|
|
|
findBestMatch<BLOCK_SIZE>(myBestDistance, myBestTrainIdx, myBestImgIdx, s_distance, s_trainIdx, s_imgIdx);
|
|
|
|
if (queryIdx < query.rows && threadIdx.x == 0)
|
|
{
|
|
bestTrainIdx[queryIdx] = myBestTrainIdx;
|
|
bestImgIdx[queryIdx] = myBestImgIdx;
|
|
bestDistance[queryIdx] = myBestDistance;
|
|
}
|
|
}
|
|
|
|
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
|
|
void matchUnrolledCached(const PtrStepSz<T>& query, const PtrStepSz<T>* trains, int n, const Mask& mask,
|
|
const PtrStepSzi& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzf& distance,
|
|
cudaStream_t stream)
|
|
{
|
|
const dim3 block(BLOCK_SIZE, BLOCK_SIZE);
|
|
const dim3 grid(divUp(query.rows, BLOCK_SIZE));
|
|
|
|
const size_t smemSize = (BLOCK_SIZE * (MAX_DESC_LEN >= 2 * BLOCK_SIZE ? MAX_DESC_LEN : 2 * BLOCK_SIZE) + BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
|
|
|
|
matchUnrolledCached<BLOCK_SIZE, MAX_DESC_LEN, Dist><<<grid, block, smemSize, stream>>>(query, trains, n, mask, trainIdx.data, imgIdx.data, distance.data);
|
|
cudaSafeCall( cudaGetLastError() );
|
|
|
|
if (stream == 0)
|
|
cudaSafeCall( cudaDeviceSynchronize() );
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
// Match Unrolled
|
|
|
|
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
|
|
__device__ void loopUnrolled(int queryIdx, const PtrStepSz<T>& query,volatile int imgIdx, const PtrStepSz<T>& train, const Mask& mask,
|
|
typename Dist::value_type* s_query, typename Dist::value_type* s_train,
|
|
float& bestDistance, int& bestTrainIdx, int& bestImgIdx)
|
|
{
|
|
for (int t = 0, endt = (train.rows + BLOCK_SIZE - 1) / BLOCK_SIZE; t < endt; ++t)
|
|
{
|
|
Dist dist;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < MAX_DESC_LEN / BLOCK_SIZE; ++i)
|
|
{
|
|
const int loadX = threadIdx.x + i * BLOCK_SIZE;
|
|
|
|
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = 0;
|
|
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = 0;
|
|
|
|
if (loadX < query.cols)
|
|
{
|
|
T val;
|
|
|
|
ForceGlob<T>::Load(query.ptr(::min(queryIdx, query.rows - 1)), loadX, val);
|
|
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = val;
|
|
|
|
ForceGlob<T>::Load(train.ptr(::min(t * BLOCK_SIZE + threadIdx.y, train.rows - 1)), loadX, val);
|
|
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = val;
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
#pragma unroll
|
|
for (int j = 0; j < BLOCK_SIZE; ++j)
|
|
dist.reduceIter(s_query[threadIdx.y * BLOCK_SIZE + j], s_train[j * BLOCK_SIZE + threadIdx.x]);
|
|
|
|
__syncthreads();
|
|
}
|
|
|
|
typename Dist::result_type distVal = dist;
|
|
|
|
const int trainIdx = t * BLOCK_SIZE + threadIdx.x;
|
|
|
|
if (queryIdx < query.rows && trainIdx < train.rows && distVal < bestDistance && mask(queryIdx, trainIdx))
|
|
{
|
|
bestImgIdx = imgIdx;
|
|
bestDistance = distVal;
|
|
bestTrainIdx = trainIdx;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
|
|
__global__ void matchUnrolled(const PtrStepSz<T> query, const PtrStepSz<T> train, const Mask mask, int* bestTrainIdx, float* bestDistance)
|
|
{
|
|
extern __shared__ int smem[];
|
|
|
|
const int queryIdx = blockIdx.x * BLOCK_SIZE + threadIdx.y;
|
|
|
|
float myBestDistance = numeric_limits<float>::max();
|
|
int myBestTrainIdx = -1;
|
|
|
|
typename Dist::value_type* s_query = (typename Dist::value_type*)(smem);
|
|
typename Dist::value_type* s_train = (typename Dist::value_type*)(smem + BLOCK_SIZE * BLOCK_SIZE);
|
|
|
|
loopUnrolled<BLOCK_SIZE, MAX_DESC_LEN, Dist>(queryIdx, query, 0, train, mask, s_query, s_train, myBestDistance, myBestTrainIdx, myBestTrainIdx);
|
|
|
|
__syncthreads();
|
|
|
|
float* s_distance = (float*)(smem);
|
|
int* s_trainIdx = (int*)(smem + BLOCK_SIZE * BLOCK_SIZE);
|
|
|
|
findBestMatch<BLOCK_SIZE>(myBestDistance, myBestTrainIdx, s_distance, s_trainIdx);
|
|
|
|
if (queryIdx < query.rows && threadIdx.x == 0)
|
|
{
|
|
bestTrainIdx[queryIdx] = myBestTrainIdx;
|
|
bestDistance[queryIdx] = myBestDistance;
|
|
}
|
|
}
|
|
|
|
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
|
|
void matchUnrolled(const PtrStepSz<T>& query, const PtrStepSz<T>& train, const Mask& mask,
|
|
const PtrStepSzi& trainIdx, const PtrStepSzf& distance,
|
|
cudaStream_t stream)
|
|
{
|
|
const dim3 block(BLOCK_SIZE, BLOCK_SIZE);
|
|
const dim3 grid(divUp(query.rows, BLOCK_SIZE));
|
|
|
|
const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
|
|
|
|
matchUnrolled<BLOCK_SIZE, MAX_DESC_LEN, Dist><<<grid, block, smemSize, stream>>>(query, train, mask, trainIdx.data, distance.data);
|
|
cudaSafeCall( cudaGetLastError() );
|
|
|
|
if (stream == 0)
|
|
cudaSafeCall( cudaDeviceSynchronize() );
|
|
}
|
|
|
|
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
|
|
__global__ void matchUnrolled(const PtrStepSz<T> query, const PtrStepSz<T>* trains, int n, const Mask mask,
|
|
int* bestTrainIdx, int* bestImgIdx, float* bestDistance)
|
|
{
|
|
extern __shared__ int smem[];
|
|
|
|
const int queryIdx = blockIdx.x * BLOCK_SIZE + threadIdx.y;
|
|
|
|
float myBestDistance = numeric_limits<float>::max();
|
|
int myBestTrainIdx = -1;
|
|
int myBestImgIdx = -1;
|
|
|
|
typename Dist::value_type* s_query = (typename Dist::value_type*)(smem);
|
|
typename Dist::value_type* s_train = (typename Dist::value_type*)(smem + BLOCK_SIZE * BLOCK_SIZE);
|
|
|
|
Mask m = mask;
|
|
|
|
for (int imgIdx = 0; imgIdx < n; ++imgIdx)
|
|
{
|
|
const PtrStepSz<T> train = trains[imgIdx];
|
|
m.next();
|
|
loopUnrolled<BLOCK_SIZE, MAX_DESC_LEN, Dist>(queryIdx, query, imgIdx, train, m, s_query, s_train, myBestDistance, myBestTrainIdx, myBestImgIdx);
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
float* s_distance = (float*)(smem);
|
|
int* s_trainIdx = (int*)(smem + BLOCK_SIZE * BLOCK_SIZE);
|
|
int* s_imgIdxIdx = (int*)(smem + 2 * BLOCK_SIZE * BLOCK_SIZE);
|
|
|
|
findBestMatch<BLOCK_SIZE>(myBestDistance, myBestTrainIdx, myBestImgIdx, s_distance, s_trainIdx, s_imgIdxIdx);
|
|
|
|
if (queryIdx < query.rows && threadIdx.x == 0)
|
|
{
|
|
bestTrainIdx[queryIdx] = myBestTrainIdx;
|
|
bestImgIdx[queryIdx] = myBestImgIdx;
|
|
bestDistance[queryIdx] = myBestDistance;
|
|
}
|
|
}
|
|
|
|
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
|
|
void matchUnrolled(const PtrStepSz<T>& query, const PtrStepSz<T>* trains, int n, const Mask& mask,
|
|
const PtrStepSzi& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzf& distance,
|
|
cudaStream_t stream)
|
|
{
|
|
const dim3 block(BLOCK_SIZE, BLOCK_SIZE);
|
|
const dim3 grid(divUp(query.rows, BLOCK_SIZE));
|
|
|
|
const size_t smemSize = (3 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
|
|
|
|
matchUnrolled<BLOCK_SIZE, MAX_DESC_LEN, Dist><<<grid, block, smemSize, stream>>>(query, trains, n, mask, trainIdx.data, imgIdx.data, distance.data);
|
|
cudaSafeCall( cudaGetLastError() );
|
|
|
|
if (stream == 0)
|
|
cudaSafeCall( cudaDeviceSynchronize() );
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
// Match
|
|
|
|
template <int BLOCK_SIZE, typename Dist, typename T, typename Mask>
|
|
__device__ void loop(int queryIdx, const PtrStepSz<T>& query, volatile int imgIdx, const PtrStepSz<T>& train, const Mask& mask,
|
|
typename Dist::value_type* s_query, typename Dist::value_type* s_train,
|
|
float& bestDistance, int& bestTrainIdx, int& bestImgIdx)
|
|
{
|
|
for (int t = 0, endt = (train.rows + BLOCK_SIZE - 1) / BLOCK_SIZE; t < endt; ++t)
|
|
{
|
|
Dist dist;
|
|
|
|
for (int i = 0, endi = (query.cols + BLOCK_SIZE - 1) / BLOCK_SIZE; i < endi; ++i)
|
|
{
|
|
const int loadX = threadIdx.x + i * BLOCK_SIZE;
|
|
|
|
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = 0;
|
|
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = 0;
|
|
|
|
if (loadX < query.cols)
|
|
{
|
|
T val;
|
|
|
|
ForceGlob<T>::Load(query.ptr(::min(queryIdx, query.rows - 1)), loadX, val);
|
|
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = val;
|
|
|
|
ForceGlob<T>::Load(train.ptr(::min(t * BLOCK_SIZE + threadIdx.y, train.rows - 1)), loadX, val);
|
|
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = val;
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
#pragma unroll
|
|
for (int j = 0; j < BLOCK_SIZE; ++j)
|
|
dist.reduceIter(s_query[threadIdx.y * BLOCK_SIZE + j], s_train[j * BLOCK_SIZE + threadIdx.x]);
|
|
|
|
__syncthreads();
|
|
}
|
|
|
|
typename Dist::result_type distVal = dist;
|
|
|
|
const int trainIdx = t * BLOCK_SIZE + threadIdx.x;
|
|
|
|
if (queryIdx < query.rows && trainIdx < train.rows && distVal < bestDistance && mask(queryIdx, trainIdx))
|
|
{
|
|
bestImgIdx = imgIdx;
|
|
bestDistance = distVal;
|
|
bestTrainIdx = trainIdx;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <int BLOCK_SIZE, typename Dist, typename T, typename Mask>
|
|
__global__ void match(const PtrStepSz<T> query, const PtrStepSz<T> train, const Mask mask, int* bestTrainIdx, float* bestDistance)
|
|
{
|
|
extern __shared__ int smem[];
|
|
|
|
const int queryIdx = blockIdx.x * BLOCK_SIZE + threadIdx.y;
|
|
|
|
float myBestDistance = numeric_limits<float>::max();
|
|
int myBestTrainIdx = -1;
|
|
|
|
typename Dist::value_type* s_query = (typename Dist::value_type*)(smem);
|
|
typename Dist::value_type* s_train = (typename Dist::value_type*)(smem + BLOCK_SIZE * BLOCK_SIZE);
|
|
|
|
loop<BLOCK_SIZE, Dist>(queryIdx, query, 0, train, mask, s_query, s_train, myBestDistance, myBestTrainIdx, myBestTrainIdx);
|
|
|
|
__syncthreads();
|
|
|
|
float* s_distance = (float*)(smem);
|
|
int* s_trainIdx = (int*)(smem + BLOCK_SIZE * BLOCK_SIZE);
|
|
|
|
findBestMatch<BLOCK_SIZE>(myBestDistance, myBestTrainIdx, s_distance, s_trainIdx);
|
|
|
|
if (queryIdx < query.rows && threadIdx.x == 0)
|
|
{
|
|
bestTrainIdx[queryIdx] = myBestTrainIdx;
|
|
bestDistance[queryIdx] = myBestDistance;
|
|
}
|
|
}
|
|
|
|
template <int BLOCK_SIZE, typename Dist, typename T, typename Mask>
|
|
void match(const PtrStepSz<T>& query, const PtrStepSz<T>& train, const Mask& mask,
|
|
const PtrStepSzi& trainIdx, const PtrStepSzf& distance,
|
|
cudaStream_t stream)
|
|
{
|
|
const dim3 block(BLOCK_SIZE, BLOCK_SIZE);
|
|
const dim3 grid(divUp(query.rows, BLOCK_SIZE));
|
|
|
|
const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
|
|
|
|
match<BLOCK_SIZE, Dist><<<grid, block, smemSize, stream>>>(query, train, mask, trainIdx.data, distance.data);
|
|
cudaSafeCall( cudaGetLastError() );
|
|
|
|
if (stream == 0)
|
|
cudaSafeCall( cudaDeviceSynchronize() );
|
|
}
|
|
|
|
template <int BLOCK_SIZE, typename Dist, typename T, typename Mask>
|
|
__global__ void match(const PtrStepSz<T> query, const PtrStepSz<T>* trains, int n, const Mask mask,
|
|
int* bestTrainIdx, int* bestImgIdx, float* bestDistance)
|
|
{
|
|
extern __shared__ int smem[];
|
|
|
|
const int queryIdx = blockIdx.x * BLOCK_SIZE + threadIdx.y;
|
|
|
|
float myBestDistance = numeric_limits<float>::max();
|
|
int myBestTrainIdx = -1;
|
|
int myBestImgIdx = -1;
|
|
|
|
typename Dist::value_type* s_query = (typename Dist::value_type*)(smem);
|
|
typename Dist::value_type* s_train = (typename Dist::value_type*)(smem + BLOCK_SIZE * BLOCK_SIZE);
|
|
|
|
Mask m = mask;
|
|
for (int imgIdx = 0; imgIdx < n; ++imgIdx)
|
|
{
|
|
const PtrStepSz<T> train = trains[imgIdx];
|
|
m.next();
|
|
loop<BLOCK_SIZE, Dist>(queryIdx, query, imgIdx, train, m, s_query, s_train, myBestDistance, myBestTrainIdx, myBestImgIdx);
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
float* s_distance = (float*)(smem);
|
|
int* s_trainIdx = (int*)(smem + BLOCK_SIZE * BLOCK_SIZE);
|
|
int* s_imgIdxIdx = (int*)(smem + 2 * BLOCK_SIZE * BLOCK_SIZE);
|
|
|
|
findBestMatch<BLOCK_SIZE>(myBestDistance, myBestTrainIdx, myBestImgIdx, s_distance, s_trainIdx, s_imgIdxIdx);
|
|
|
|
if (queryIdx < query.rows && threadIdx.x == 0)
|
|
{
|
|
bestTrainIdx[queryIdx] = myBestTrainIdx;
|
|
bestImgIdx[queryIdx] = myBestImgIdx;
|
|
bestDistance[queryIdx] = myBestDistance;
|
|
}
|
|
}
|
|
|
|
template <int BLOCK_SIZE, typename Dist, typename T, typename Mask>
|
|
void match(const PtrStepSz<T>& query, const PtrStepSz<T>* trains, int n, const Mask& mask,
|
|
const PtrStepSzi& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzf& distance,
|
|
cudaStream_t stream)
|
|
{
|
|
const dim3 block(BLOCK_SIZE, BLOCK_SIZE);
|
|
const dim3 grid(divUp(query.rows, BLOCK_SIZE));
|
|
|
|
const size_t smemSize = (3 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
|
|
|
|
match<BLOCK_SIZE, Dist><<<grid, block, smemSize, stream>>>(query, trains, n, mask, trainIdx.data, imgIdx.data, distance.data);
|
|
cudaSafeCall( cudaGetLastError() );
|
|
|
|
if (stream == 0)
|
|
cudaSafeCall( cudaDeviceSynchronize() );
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
// Match dispatcher
|
|
|
|
template <typename Dist, typename T, typename Mask>
|
|
void matchDispatcher(const PtrStepSz<T>& query, const PtrStepSz<T>& train, const Mask& mask,
|
|
const PtrStepSzi& trainIdx, const PtrStepSzf& distance,
|
|
int cc, cudaStream_t stream)
|
|
{
|
|
(void)cc;
|
|
if (query.cols <= 64)
|
|
{
|
|
matchUnrolledCached<16, 64, Dist>(query, train, mask, trainIdx, distance, stream);
|
|
}
|
|
else if (query.cols <= 128)
|
|
{
|
|
matchUnrolledCached<16, 128, Dist>(query, train, mask, trainIdx, distance, stream);
|
|
}
|
|
/*else if (query.cols <= 256)
|
|
{
|
|
matchUnrolled<16, 256, Dist>(query, train, mask, trainIdx, distance, stream);
|
|
}
|
|
else if (query.cols <= 512)
|
|
{
|
|
matchUnrolled<16, 512, Dist>(query, train, mask, trainIdx, distance, stream);
|
|
}
|
|
else if (query.cols <= 1024)
|
|
{
|
|
matchUnrolled<16, 1024, Dist>(query, train, mask, trainIdx, distance, stream);
|
|
}*/
|
|
else
|
|
{
|
|
match<16, Dist>(query, train, mask, trainIdx, distance, stream);
|
|
}
|
|
}
|
|
|
|
template <typename Dist, typename T, typename Mask>
|
|
void matchDispatcher(const PtrStepSz<T>& query, const PtrStepSz<T>* trains, int n, const Mask& mask,
|
|
const PtrStepSzi& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzf& distance,
|
|
int cc, cudaStream_t stream)
|
|
{
|
|
(void)cc;
|
|
if (query.cols <= 64)
|
|
{
|
|
matchUnrolledCached<16, 64, Dist>(query, trains, n, mask, trainIdx, imgIdx, distance, stream);
|
|
}
|
|
else if (query.cols <= 128)
|
|
{
|
|
matchUnrolledCached<16, 128, Dist>(query, trains, n, mask, trainIdx, imgIdx, distance, stream);
|
|
}
|
|
/*else if (query.cols <= 256)
|
|
{
|
|
matchUnrolled<16, 256, Dist>(query, trains, n, mask, trainIdx, imgIdx, distance, stream);
|
|
}
|
|
else if (query.cols <= 512)
|
|
{
|
|
matchUnrolled<16, 512, Dist>(query, trains, n, mask, trainIdx, imgIdx, distance, stream);
|
|
}
|
|
else if (query.cols <= 1024)
|
|
{
|
|
matchUnrolled<16, 1024, Dist>(query, trains, n, mask, trainIdx, imgIdx, distance, stream);
|
|
}*/
|
|
else
|
|
{
|
|
match<16, Dist>(query, trains, n, mask, trainIdx, imgIdx, distance, stream);
|
|
}
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
// Match caller
|
|
|
|
template <typename T> void matchL1_gpu(const PtrStepSzb& query, const PtrStepSzb& train, const PtrStepSzb& mask,
|
|
const PtrStepSzi& trainIdx, const PtrStepSzf& distance,
|
|
int cc, cudaStream_t stream)
|
|
{
|
|
if (mask.data)
|
|
{
|
|
matchDispatcher< L1Dist<T> >(static_cast< PtrStepSz<T> >(query), static_cast< PtrStepSz<T> >(train), SingleMask(mask),
|
|
trainIdx, distance,
|
|
cc, stream);
|
|
}
|
|
else
|
|
{
|
|
matchDispatcher< L1Dist<T> >(static_cast< PtrStepSz<T> >(query), static_cast< PtrStepSz<T> >(train), WithOutMask(),
|
|
trainIdx, distance,
|
|
cc, stream);
|
|
}
|
|
}
|
|
|
|
template void matchL1_gpu<uchar >(const PtrStepSzb& queryDescs, const PtrStepSzb& trainDescs, const PtrStepSzb& mask, const PtrStepSzi& trainIdx, const PtrStepSzf& distance, int cc, cudaStream_t stream);
|
|
//template void matchL1_gpu<schar >(const PtrStepSzb& queryDescs, const PtrStepSzb& trainDescs, const PtrStepSzb& mask, const PtrStepSzi& trainIdx, const PtrStepSzf& distance, int cc, cudaStream_t stream);
|
|
template void matchL1_gpu<ushort>(const PtrStepSzb& queryDescs, const PtrStepSzb& trainDescs, const PtrStepSzb& mask, const PtrStepSzi& trainIdx, const PtrStepSzf& distance, int cc, cudaStream_t stream);
|
|
template void matchL1_gpu<short >(const PtrStepSzb& queryDescs, const PtrStepSzb& trainDescs, const PtrStepSzb& mask, const PtrStepSzi& trainIdx, const PtrStepSzf& distance, int cc, cudaStream_t stream);
|
|
template void matchL1_gpu<int >(const PtrStepSzb& queryDescs, const PtrStepSzb& trainDescs, const PtrStepSzb& mask, const PtrStepSzi& trainIdx, const PtrStepSzf& distance, int cc, cudaStream_t stream);
|
|
template void matchL1_gpu<float >(const PtrStepSzb& queryDescs, const PtrStepSzb& trainDescs, const PtrStepSzb& mask, const PtrStepSzi& trainIdx, const PtrStepSzf& distance, int cc, cudaStream_t stream);
|
|
|
|
template <typename T> void matchL2_gpu(const PtrStepSzb& query, const PtrStepSzb& train, const PtrStepSzb& mask,
|
|
const PtrStepSzi& trainIdx, const PtrStepSzf& distance,
|
|
int cc, cudaStream_t stream)
|
|
{
|
|
if (mask.data)
|
|
{
|
|
matchDispatcher<L2Dist>(static_cast< PtrStepSz<T> >(query), static_cast< PtrStepSz<T> >(train), SingleMask(mask),
|
|
trainIdx, distance,
|
|
cc, stream);
|
|
}
|
|
else
|
|
{
|
|
matchDispatcher<L2Dist>(static_cast< PtrStepSz<T> >(query), static_cast< PtrStepSz<T> >(train), WithOutMask(),
|
|
trainIdx, distance,
|
|
cc, stream);
|
|
}
|
|
}
|
|
|
|
//template void matchL2_gpu<uchar >(const PtrStepSzb& queryDescs, const PtrStepSzb& trainDescs, const PtrStepSzb& mask, const PtrStepSzi& trainIdx, const PtrStepSzf& distance, int cc, cudaStream_t stream);
|
|
//template void matchL2_gpu<schar >(const PtrStepSzb& queryDescs, const PtrStepSzb& trainDescs, const PtrStepSzb& mask, const PtrStepSzi& trainIdx, const PtrStepSzf& distance, int cc, cudaStream_t stream);
|
|
//template void matchL2_gpu<ushort>(const PtrStepSzb& queryDescs, const PtrStepSzb& trainDescs, const PtrStepSzb& mask, const PtrStepSzi& trainIdx, const PtrStepSzf& distance, int cc, cudaStream_t stream);
|
|
//template void matchL2_gpu<short >(const PtrStepSzb& queryDescs, const PtrStepSzb& trainDescs, const PtrStepSzb& mask, const PtrStepSzi& trainIdx, const PtrStepSzf& distance, int cc, cudaStream_t stream);
|
|
//template void matchL2_gpu<int >(const PtrStepSzb& queryDescs, const PtrStepSzb& trainDescs, const PtrStepSzb& mask, const PtrStepSzi& trainIdx, const PtrStepSzf& distance, int cc, cudaStream_t stream);
|
|
template void matchL2_gpu<float >(const PtrStepSzb& queryDescs, const PtrStepSzb& trainDescs, const PtrStepSzb& mask, const PtrStepSzi& trainIdx, const PtrStepSzf& distance, int cc, cudaStream_t stream);
|
|
|
|
template <typename T> void matchHamming_gpu(const PtrStepSzb& query, const PtrStepSzb& train, const PtrStepSzb& mask,
|
|
const PtrStepSzi& trainIdx, const PtrStepSzf& distance,
|
|
int cc, cudaStream_t stream)
|
|
{
|
|
if (mask.data)
|
|
{
|
|
matchDispatcher<HammingDist>(static_cast< PtrStepSz<T> >(query), static_cast< PtrStepSz<T> >(train), SingleMask(mask),
|
|
trainIdx, distance,
|
|
cc, stream);
|
|
}
|
|
else
|
|
{
|
|
matchDispatcher<HammingDist>(static_cast< PtrStepSz<T> >(query), static_cast< PtrStepSz<T> >(train), WithOutMask(),
|
|
trainIdx, distance,
|
|
cc, stream);
|
|
}
|
|
}
|
|
|
|
template void matchHamming_gpu<uchar >(const PtrStepSzb& queryDescs, const PtrStepSzb& trainDescs, const PtrStepSzb& mask, const PtrStepSzi& trainIdx, const PtrStepSzf& distance, int cc, cudaStream_t stream);
|
|
//template void matchHamming_gpu<schar >(const PtrStepSzb& queryDescs, const PtrStepSzb& trainDescs, const PtrStepSzb& mask, const PtrStepSzi& trainIdx, const PtrStepSzf& distance, int cc, cudaStream_t stream);
|
|
template void matchHamming_gpu<ushort>(const PtrStepSzb& queryDescs, const PtrStepSzb& trainDescs, const PtrStepSzb& mask, const PtrStepSzi& trainIdx, const PtrStepSzf& distance, int cc, cudaStream_t stream);
|
|
//template void matchHamming_gpu<short >(const PtrStepSzb& queryDescs, const PtrStepSzb& trainDescs, const PtrStepSzb& mask, const PtrStepSzi& trainIdx, const PtrStepSzf& distance, int cc, cudaStream_t stream);
|
|
template void matchHamming_gpu<int >(const PtrStepSzb& queryDescs, const PtrStepSzb& trainDescs, const PtrStepSzb& mask, const PtrStepSzi& trainIdx, const PtrStepSzf& distance, int cc, cudaStream_t stream);
|
|
|
|
template <typename T> void matchL1_gpu(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks,
|
|
const PtrStepSzi& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzf& distance,
|
|
int cc, cudaStream_t stream)
|
|
{
|
|
if (masks.data)
|
|
{
|
|
matchDispatcher< L1Dist<T> >(static_cast< PtrStepSz<T> >(query), (const PtrStepSz<T>*)trains.ptr(), trains.cols, MaskCollection(masks.data),
|
|
trainIdx, imgIdx, distance,
|
|
cc, stream);
|
|
}
|
|
else
|
|
{
|
|
matchDispatcher< L1Dist<T> >(static_cast< PtrStepSz<T> >(query), (const PtrStepSz<T>*)trains.ptr(), trains.cols, WithOutMask(),
|
|
trainIdx, imgIdx, distance,
|
|
cc, stream);
|
|
}
|
|
}
|
|
|
|
template void matchL1_gpu<uchar >(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks, const PtrStepSzi& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzf& distance, int cc, cudaStream_t stream);
|
|
//template void matchL1_gpu<schar >(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks, const PtrStepSzi& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzf& distance, int cc, cudaStream_t stream);
|
|
template void matchL1_gpu<ushort>(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks, const PtrStepSzi& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzf& distance, int cc, cudaStream_t stream);
|
|
template void matchL1_gpu<short >(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks, const PtrStepSzi& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzf& distance, int cc, cudaStream_t stream);
|
|
template void matchL1_gpu<int >(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks, const PtrStepSzi& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzf& distance, int cc, cudaStream_t stream);
|
|
template void matchL1_gpu<float >(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks, const PtrStepSzi& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzf& distance, int cc, cudaStream_t stream);
|
|
|
|
template <typename T> void matchL2_gpu(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks,
|
|
const PtrStepSzi& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzf& distance,
|
|
int cc, cudaStream_t stream)
|
|
{
|
|
if (masks.data)
|
|
{
|
|
matchDispatcher<L2Dist>(static_cast< PtrStepSz<T> >(query), (const PtrStepSz<T>*)trains.ptr(), trains.cols, MaskCollection(masks.data),
|
|
trainIdx, imgIdx, distance,
|
|
cc, stream);
|
|
}
|
|
else
|
|
{
|
|
matchDispatcher<L2Dist>(static_cast< PtrStepSz<T> >(query), (const PtrStepSz<T>*)trains.ptr(), trains.cols, WithOutMask(),
|
|
trainIdx, imgIdx, distance,
|
|
cc, stream);
|
|
}
|
|
}
|
|
|
|
//template void matchL2_gpu<uchar >(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks, const PtrStepSzi& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzf& distance, int cc, cudaStream_t stream);
|
|
//template void matchL2_gpu<schar >(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks, const PtrStepSzi& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzf& distance, int cc, cudaStream_t stream);
|
|
//template void matchL2_gpu<ushort>(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks, const PtrStepSzi& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzf& distance, int cc, cudaStream_t stream);
|
|
//template void matchL2_gpu<short >(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks, const PtrStepSzi& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzf& distance, int cc, cudaStream_t stream);
|
|
//template void matchL2_gpu<int >(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks, const PtrStepSzi& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzf& distance, int cc, cudaStream_t stream);
|
|
template void matchL2_gpu<float >(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& maskCollection, const PtrStepSzi& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzf& distance, int cc, cudaStream_t stream);
|
|
|
|
template <typename T> void matchHamming_gpu(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks,
|
|
const PtrStepSzi& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzf& distance,
|
|
int cc, cudaStream_t stream)
|
|
{
|
|
if (masks.data)
|
|
{
|
|
matchDispatcher<HammingDist>(static_cast< PtrStepSz<T> >(query), (const PtrStepSz<T>*)trains.ptr(), trains.cols, MaskCollection(masks.data),
|
|
trainIdx, imgIdx, distance,
|
|
cc, stream);
|
|
}
|
|
else
|
|
{
|
|
matchDispatcher<HammingDist>(static_cast< PtrStepSz<T> >(query), (const PtrStepSz<T>*)trains.ptr(), trains.cols, WithOutMask(),
|
|
trainIdx, imgIdx, distance,
|
|
cc, stream);
|
|
}
|
|
}
|
|
|
|
template void matchHamming_gpu<uchar >(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks, const PtrStepSzi& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzf& distance, int cc, cudaStream_t stream);
|
|
//template void matchHamming_gpu<schar >(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks, const PtrStepSzi& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzf& distance, int cc, cudaStream_t stream);
|
|
template void matchHamming_gpu<ushort>(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks, const PtrStepSzi& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzf& distance, int cc, cudaStream_t stream);
|
|
//template void matchHamming_gpu<short >(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks, const PtrStepSzi& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzf& distance, int cc, cudaStream_t stream);
|
|
template void matchHamming_gpu<int >(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks, const PtrStepSzi& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzf& distance, int cc, cudaStream_t stream);
|
|
} // namespace bf_match
|
|
}}} // namespace cv { namespace gpu { namespace device {
|
|
|
|
|
|
#endif /* CUDA_DISABLER */ |