mirror of
https://github.com/opencv/opencv.git
synced 2025-01-12 07:42:32 +08:00
d6c699c014
stereo module in opencv_contrib is renamed to xstereo
166 lines
5.3 KiB
C++
166 lines
5.3 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
// (3-clause BSD License)
|
|
//
|
|
// Copyright (C) 2015-2016, OpenCV Foundation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * Neither the names of the copyright holders nor the names of the contributors
|
|
// may be used to endorse or promote products derived from this software
|
|
// without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall copyright holders or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "perf_precomp.hpp"
|
|
#include <algorithm>
|
|
#include <functional>
|
|
|
|
namespace opencv_test
|
|
{
|
|
using namespace perf;
|
|
|
|
CV_ENUM(Method, RANSAC, LMEDS)
|
|
typedef tuple<int, double, Method, size_t> AffineParams;
|
|
typedef TestBaseWithParam<AffineParams> EstimateAffine;
|
|
#define ESTIMATE_PARAMS Combine(Values(100000, 5000, 100), Values(0.99, 0.95, 0.9), Method::all(), Values(10, 0))
|
|
|
|
static float rngIn(float from, float to) { return from + (to-from) * (float)theRNG(); }
|
|
|
|
static Mat rngPartialAffMat() {
|
|
double theta = rngIn(0, (float)CV_PI*2.f);
|
|
double scale = rngIn(0, 3);
|
|
double tx = rngIn(-2, 2);
|
|
double ty = rngIn(-2, 2);
|
|
double aff[2*3] = { std::cos(theta) * scale, -std::sin(theta) * scale, tx,
|
|
std::sin(theta) * scale, std::cos(theta) * scale, ty };
|
|
return Mat(2, 3, CV_64F, aff).clone();
|
|
}
|
|
|
|
PERF_TEST_P( EstimateAffine, EstimateAffine2D, ESTIMATE_PARAMS )
|
|
{
|
|
AffineParams params = GetParam();
|
|
const int n = get<0>(params);
|
|
const double confidence = get<1>(params);
|
|
const int method = get<2>(params);
|
|
const size_t refining = get<3>(params);
|
|
|
|
Mat aff(2, 3, CV_64F);
|
|
cv::randu(aff, -2., 2.);
|
|
|
|
// LMEDS can't handle more than 50% outliers (by design)
|
|
int m;
|
|
if (method == LMEDS)
|
|
m = 3*n/5;
|
|
else
|
|
m = 2*n/5;
|
|
const float shift_outl = 15.f;
|
|
const float noise_level = 20.f;
|
|
|
|
Mat fpts(1, n, CV_32FC2);
|
|
Mat tpts(1, n, CV_32FC2);
|
|
|
|
randu(fpts, 0., 100.);
|
|
transform(fpts, tpts, aff);
|
|
|
|
/* adding noise to some points */
|
|
Mat outliers = tpts.colRange(m, n);
|
|
outliers.reshape(1) += shift_outl;
|
|
|
|
Mat noise (outliers.size(), outliers.type());
|
|
randu(noise, 0., noise_level);
|
|
outliers += noise;
|
|
|
|
Mat aff_est;
|
|
vector<uchar> inliers (n);
|
|
|
|
warmup(inliers, WARMUP_WRITE);
|
|
warmup(fpts, WARMUP_READ);
|
|
warmup(tpts, WARMUP_READ);
|
|
|
|
TEST_CYCLE()
|
|
{
|
|
aff_est = estimateAffine2D(fpts, tpts, inliers, method, 3, 2000, confidence, refining);
|
|
}
|
|
|
|
// we already have accuracy tests
|
|
SANITY_CHECK_NOTHING();
|
|
}
|
|
|
|
PERF_TEST_P( EstimateAffine, EstimateAffinePartial2D, ESTIMATE_PARAMS )
|
|
{
|
|
AffineParams params = GetParam();
|
|
const int n = get<0>(params);
|
|
const double confidence = get<1>(params);
|
|
const int method = get<2>(params);
|
|
const size_t refining = get<3>(params);
|
|
|
|
Mat aff = rngPartialAffMat();
|
|
|
|
int m;
|
|
// LMEDS can't handle more than 50% outliers (by design)
|
|
if (method == LMEDS)
|
|
m = 3*n/5;
|
|
else
|
|
m = 2*n/5;
|
|
const float shift_outl = 15.f; const float noise_level = 20.f;
|
|
|
|
Mat fpts(1, n, CV_32FC2);
|
|
Mat tpts(1, n, CV_32FC2);
|
|
|
|
randu(fpts, 0., 100.);
|
|
transform(fpts, tpts, aff);
|
|
|
|
/* adding noise*/
|
|
Mat outliers = tpts.colRange(m, n);
|
|
outliers.reshape(1) += shift_outl;
|
|
|
|
Mat noise (outliers.size(), outliers.type());
|
|
randu(noise, 0., noise_level);
|
|
outliers += noise;
|
|
|
|
Mat aff_est;
|
|
vector<uchar> inliers (n);
|
|
|
|
warmup(inliers, WARMUP_WRITE);
|
|
warmup(fpts, WARMUP_READ);
|
|
warmup(tpts, WARMUP_READ);
|
|
|
|
TEST_CYCLE()
|
|
{
|
|
aff_est = estimateAffinePartial2D(fpts, tpts, inliers, method, 3, 2000, confidence, refining);
|
|
}
|
|
|
|
// we already have accuracy tests
|
|
SANITY_CHECK_NOTHING();
|
|
}
|
|
|
|
} // namespace opencv_test
|