mirror of
https://github.com/opencv/opencv.git
synced 2025-01-12 07:42:32 +08:00
416bf3253d
* attempt to add 0d/1d mat support to OpenCV * revised the patch; now 1D mat is treated as 1xN 2D mat rather than Nx1. * a step towards 'green' tests * another little step towards 'green' tests * calib test failures seem to be fixed now * more fixes _core & _dnn * another step towards green ci; even 0D mat's (a.k.a. scalars) are now partly supported! * * fixed strange bug in aruco/charuco detector, not sure why it did not work * also fixed a few remaining failures (hopefully) in dnn & core * disabled failing GAPI tests - too complex to dig into this compiler pipeline * hopefully fixed java tests * trying to fix some more tests * quick followup fix * continue to fix test failures and warnings * quick followup fix * trying to fix some more tests * partly fixed support for 0D/scalar UMat's * use updated parseReduce() from upstream * trying to fix the remaining test failures * fixed [ch]aruco tests in Python * still trying to fix tests * revert "fix" in dnn's CUDA tensor * trying to fix dnn+CUDA test failures * fixed 1D umat creation * hopefully fixed remaining cuda test failures * removed training whitespaces
154 lines
4.3 KiB
C++
154 lines
4.3 KiB
C++
#include "perf_precomp.hpp"
|
|
|
|
namespace opencv_test
|
|
{
|
|
using namespace perf;
|
|
|
|
CV_ENUM(pnpAlgo, SOLVEPNP_ITERATIVE, SOLVEPNP_EPNP, SOLVEPNP_P3P, SOLVEPNP_DLS, SOLVEPNP_UPNP)
|
|
|
|
typedef tuple<int, pnpAlgo> PointsNum_Algo_t;
|
|
typedef perf::TestBaseWithParam<PointsNum_Algo_t> PointsNum_Algo;
|
|
|
|
typedef perf::TestBaseWithParam<int> PointsNum;
|
|
|
|
PERF_TEST_P(PointsNum_Algo, solvePnP,
|
|
testing::Combine( //When non planar, DLT needs at least 6 points for SOLVEPNP_ITERATIVE flag
|
|
testing::Values(6, 3*9, 7*13), //TODO: find why results on 4 points are too unstable
|
|
testing::Values((int)SOLVEPNP_ITERATIVE, (int)SOLVEPNP_EPNP, (int)SOLVEPNP_UPNP, (int)SOLVEPNP_DLS)
|
|
)
|
|
)
|
|
{
|
|
int pointsNum = get<0>(GetParam());
|
|
pnpAlgo algo = get<1>(GetParam());
|
|
|
|
vector<Point2f> points2d(pointsNum);
|
|
vector<Point3f> points3d(pointsNum);
|
|
Mat rvec = Mat::zeros(3, 1, CV_32FC1);
|
|
Mat tvec = Mat::zeros(3, 1, CV_32FC1);
|
|
|
|
Mat distortion = Mat::zeros(5, 1, CV_32FC1);
|
|
Mat intrinsics = Mat::eye(3, 3, CV_32FC1);
|
|
intrinsics.at<float> (0, 0) = 400.0;
|
|
intrinsics.at<float> (1, 1) = 400.0;
|
|
intrinsics.at<float> (0, 2) = 640 / 2;
|
|
intrinsics.at<float> (1, 2) = 480 / 2;
|
|
|
|
warmup(points3d, WARMUP_RNG);
|
|
warmup(rvec, WARMUP_RNG);
|
|
warmup(tvec, WARMUP_RNG);
|
|
|
|
projectPoints(points3d, rvec, tvec, intrinsics, distortion, points2d);
|
|
|
|
//add noise
|
|
int sz = (int)points2d.size();
|
|
Mat noise(1, &sz, CV_32FC2);
|
|
randu(noise, 0, 0.01);
|
|
cv::add(points2d, noise, points2d);
|
|
|
|
declare.in(points3d, points2d);
|
|
declare.time(100);
|
|
|
|
TEST_CYCLE_N(1000)
|
|
{
|
|
cv::solvePnP(points3d, points2d, intrinsics, distortion, rvec, tvec, false, algo);
|
|
}
|
|
|
|
SANITY_CHECK(rvec, 1e-4);
|
|
// the check is relaxed from 1e-4 to 2e-2 after LevMarq replacement
|
|
SANITY_CHECK(tvec, 2e-2);
|
|
}
|
|
|
|
PERF_TEST_P(PointsNum_Algo, solvePnPSmallPoints,
|
|
testing::Combine(
|
|
testing::Values(5),
|
|
testing::Values((int)SOLVEPNP_P3P, (int)SOLVEPNP_EPNP, (int)SOLVEPNP_DLS, (int)SOLVEPNP_UPNP)
|
|
)
|
|
)
|
|
{
|
|
int pointsNum = get<0>(GetParam());
|
|
pnpAlgo algo = get<1>(GetParam());
|
|
if( algo == SOLVEPNP_P3P )
|
|
pointsNum = 4;
|
|
|
|
vector<Point2f> points2d(pointsNum);
|
|
vector<Point3f> points3d(pointsNum);
|
|
Mat rvec = Mat::zeros(3, 1, CV_32FC1);
|
|
Mat tvec = Mat::zeros(3, 1, CV_32FC1);
|
|
|
|
Mat distortion = Mat::zeros(5, 1, CV_32FC1);
|
|
Mat intrinsics = Mat::eye(3, 3, CV_32FC1);
|
|
intrinsics.at<float> (0, 0) = 400.0f;
|
|
intrinsics.at<float> (1, 1) = 400.0f;
|
|
intrinsics.at<float> (0, 2) = 640 / 2;
|
|
intrinsics.at<float> (1, 2) = 480 / 2;
|
|
|
|
warmup(points3d, WARMUP_RNG);
|
|
warmup(rvec, WARMUP_RNG);
|
|
warmup(tvec, WARMUP_RNG);
|
|
|
|
// normalize Rodrigues vector
|
|
Mat rvec_tmp = Mat::eye(3, 3, CV_32F);
|
|
cv::Rodrigues(rvec, rvec_tmp);
|
|
cv::Rodrigues(rvec_tmp, rvec);
|
|
|
|
cv::projectPoints(points3d, rvec, tvec, intrinsics, distortion, points2d);
|
|
|
|
//add noise
|
|
int npoints = (int)points2d.size();
|
|
Mat noise(1, &npoints, CV_32FC2);
|
|
randu(noise, -0.001, 0.001);
|
|
cv::add(points2d, noise, points2d);
|
|
|
|
declare.in(points3d, points2d);
|
|
declare.time(100);
|
|
|
|
TEST_CYCLE_N(1000)
|
|
{
|
|
cv::solvePnP(points3d, points2d, intrinsics, distortion, rvec, tvec, false, algo);
|
|
}
|
|
|
|
SANITY_CHECK(rvec, 1e-1);
|
|
SANITY_CHECK(tvec, 1e-2);
|
|
}
|
|
|
|
PERF_TEST_P(PointsNum, DISABLED_SolvePnPRansac, testing::Values(5, 3*9, 7*13))
|
|
{
|
|
int count = GetParam();
|
|
|
|
Mat object(1, count, CV_32FC3);
|
|
randu(object, -100, 100);
|
|
|
|
Mat camera_mat(3, 3, CV_32FC1);
|
|
randu(camera_mat, 0.5, 1);
|
|
camera_mat.at<float>(0, 1) = 0.f;
|
|
camera_mat.at<float>(1, 0) = 0.f;
|
|
camera_mat.at<float>(2, 0) = 0.f;
|
|
camera_mat.at<float>(2, 1) = 0.f;
|
|
|
|
Mat dist_coef(1, 8, CV_32F, cv::Scalar::all(0));
|
|
|
|
vector<cv::Point2f> image_vec;
|
|
|
|
Mat rvec_gold(1, 3, CV_32FC1);
|
|
randu(rvec_gold, 0, 1);
|
|
|
|
Mat tvec_gold(1, 3, CV_32FC1);
|
|
randu(tvec_gold, 0, 1);
|
|
projectPoints(object, rvec_gold, tvec_gold, camera_mat, dist_coef, image_vec);
|
|
|
|
Mat image(1, count, CV_32FC2, &image_vec[0]);
|
|
|
|
Mat rvec;
|
|
Mat tvec;
|
|
|
|
TEST_CYCLE()
|
|
{
|
|
cv::solvePnPRansac(object, image, camera_mat, dist_coef, rvec, tvec);
|
|
}
|
|
|
|
SANITY_CHECK(rvec, 1e-6);
|
|
SANITY_CHECK(tvec, 1e-6);
|
|
}
|
|
|
|
} // namespace
|