mirror of
https://github.com/opencv/opencv.git
synced 2025-01-12 07:42:32 +08:00
29f91a08d5
Reverted contour approximation behavior #25680 Related issue #25663 - revert new function behavior despite it returning different result than the old one (reverts PR #25672). Also added Coverity issue fix.
486 lines
15 KiB
C++
486 lines
15 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html
|
|
|
|
#include "test_precomp.hpp"
|
|
#include "opencv2/ts/ocl_test.hpp"
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
// debug function
|
|
template <typename T>
|
|
inline static void print_pts(const T& c)
|
|
{
|
|
for (const auto& one_pt : c)
|
|
{
|
|
cout << one_pt << " ";
|
|
}
|
|
cout << endl;
|
|
}
|
|
|
|
// debug function
|
|
template <typename T>
|
|
inline static void print_pts_2(vector<T>& cs)
|
|
{
|
|
int cnt = 0;
|
|
cout << "Contours:" << endl;
|
|
for (const auto& one_c : cs)
|
|
{
|
|
cout << cnt++ << " : ";
|
|
print_pts(one_c);
|
|
}
|
|
};
|
|
|
|
// draw 1-2 px blob with orientation defined by 'kind'
|
|
template <typename T>
|
|
inline static void drawSmallContour(Mat& img, Point pt, int kind, int color_)
|
|
{
|
|
const T color = static_cast<T>(color_);
|
|
img.at<T>(pt) = color;
|
|
switch (kind)
|
|
{
|
|
case 1: img.at<T>(pt + Point(1, 0)) = color; break;
|
|
case 2: img.at<T>(pt + Point(1, -1)) = color; break;
|
|
case 3: img.at<T>(pt + Point(0, -1)) = color; break;
|
|
case 4: img.at<T>(pt + Point(-1, -1)) = color; break;
|
|
case 5: img.at<T>(pt + Point(-1, 0)) = color; break;
|
|
case 6: img.at<T>(pt + Point(-1, 1)) = color; break;
|
|
case 7: img.at<T>(pt + Point(0, 1)) = color; break;
|
|
case 8: img.at<T>(pt + Point(1, 1)) = color; break;
|
|
default: break;
|
|
}
|
|
}
|
|
|
|
inline static void drawContours(Mat& img,
|
|
const vector<vector<Point>>& contours,
|
|
const Scalar& color = Scalar::all(255))
|
|
{
|
|
for (const auto& contour : contours)
|
|
{
|
|
for (size_t n = 0, end = contour.size(); n < end; ++n)
|
|
{
|
|
size_t m = n + 1;
|
|
if (n == end - 1)
|
|
m = 0;
|
|
line(img, contour[m], contour[n], color, 1, LINE_8);
|
|
}
|
|
}
|
|
}
|
|
|
|
//==================================================================================================
|
|
|
|
// Test parameters - mode + method
|
|
typedef testing::TestWithParam<tuple<int, int>> Imgproc_FindContours_Modes1;
|
|
|
|
|
|
// Draw random rectangle and find contours
|
|
//
|
|
TEST_P(Imgproc_FindContours_Modes1, rectangle)
|
|
{
|
|
const int mode = get<0>(GetParam());
|
|
const int method = get<1>(GetParam());
|
|
|
|
const size_t ITER = 100;
|
|
RNG rng = TS::ptr()->get_rng();
|
|
|
|
for (size_t i = 0; i < ITER; ++i)
|
|
{
|
|
SCOPED_TRACE(cv::format("i=%zu", i));
|
|
const Size sz(rng.uniform(640, 1920), rng.uniform(480, 1080));
|
|
Mat img(sz, CV_8UC1, Scalar::all(0));
|
|
Mat img32s(sz, CV_32SC1, Scalar::all(0));
|
|
const Rect r(Point(rng.uniform(1, sz.width / 2 - 1), rng.uniform(1, sz.height / 2)),
|
|
Point(rng.uniform(sz.width / 2 - 1, sz.width - 1),
|
|
rng.uniform(sz.height / 2 - 1, sz.height - 1)));
|
|
rectangle(img, r, Scalar::all(255));
|
|
rectangle(img32s, r, Scalar::all(255), FILLED);
|
|
|
|
const vector<Point> ext_ref {r.tl(),
|
|
r.tl() + Point(0, r.height - 1),
|
|
r.br() + Point(-1, -1),
|
|
r.tl() + Point(r.width - 1, 0)};
|
|
const vector<Point> int_ref {ext_ref[0] + Point(0, 1),
|
|
ext_ref[0] + Point(1, 0),
|
|
ext_ref[3] + Point(-1, 0),
|
|
ext_ref[3] + Point(0, 1),
|
|
ext_ref[2] + Point(0, -1),
|
|
ext_ref[2] + Point(-1, 0),
|
|
ext_ref[1] + Point(1, 0),
|
|
ext_ref[1] + Point(0, -1)};
|
|
const size_t ext_perimeter = r.width * 2 + r.height * 2;
|
|
const size_t int_perimeter = ext_perimeter - 4;
|
|
|
|
vector<vector<Point>> contours;
|
|
vector<vector<schar>> chains;
|
|
vector<Vec4i> hierarchy;
|
|
|
|
// run functionn
|
|
if (mode == RETR_FLOODFILL)
|
|
if (method == 0)
|
|
findContours(img32s, chains, hierarchy, mode, method);
|
|
else
|
|
findContours(img32s, contours, hierarchy, mode, method);
|
|
else if (method == 0)
|
|
findContours(img, chains, hierarchy, mode, method);
|
|
else
|
|
findContours(img, contours, hierarchy, mode, method);
|
|
|
|
// verify results
|
|
if (mode == RETR_EXTERNAL)
|
|
{
|
|
if (method == 0)
|
|
{
|
|
ASSERT_EQ(1U, chains.size());
|
|
}
|
|
else
|
|
{
|
|
ASSERT_EQ(1U, contours.size());
|
|
if (method == CHAIN_APPROX_NONE)
|
|
{
|
|
EXPECT_EQ(int_perimeter, contours[0].size());
|
|
}
|
|
else if (method == CHAIN_APPROX_SIMPLE)
|
|
{
|
|
EXPECT_MAT_NEAR(Mat(ext_ref), Mat(contours[0]), 0);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (method == 0)
|
|
{
|
|
ASSERT_EQ(2U, chains.size());
|
|
}
|
|
else
|
|
{
|
|
ASSERT_EQ(2U, contours.size());
|
|
if (mode == RETR_LIST)
|
|
{
|
|
if (method == CHAIN_APPROX_NONE)
|
|
{
|
|
EXPECT_EQ(int_perimeter - 4, contours[0].size());
|
|
EXPECT_EQ(int_perimeter, contours[1].size());
|
|
}
|
|
else if (method == CHAIN_APPROX_SIMPLE)
|
|
{
|
|
EXPECT_MAT_NEAR(Mat(int_ref), Mat(contours[0]), 0);
|
|
EXPECT_MAT_NEAR(Mat(ext_ref), Mat(contours[1]), 0);
|
|
}
|
|
}
|
|
else if (mode == RETR_CCOMP || mode == RETR_TREE)
|
|
{
|
|
if (method == CHAIN_APPROX_NONE)
|
|
{
|
|
EXPECT_EQ(int_perimeter, contours[0].size());
|
|
EXPECT_EQ(int_perimeter - 4, contours[1].size());
|
|
}
|
|
else if (method == CHAIN_APPROX_SIMPLE)
|
|
{
|
|
EXPECT_MAT_NEAR(Mat(ext_ref), Mat(contours[0]), 0);
|
|
EXPECT_MAT_NEAR(Mat(int_ref), Mat(contours[1]), 0);
|
|
}
|
|
}
|
|
else if (mode == RETR_FLOODFILL)
|
|
{
|
|
if (method == CHAIN_APPROX_NONE)
|
|
{
|
|
EXPECT_EQ(int_perimeter + 4, contours[0].size());
|
|
}
|
|
else if (method == CHAIN_APPROX_SIMPLE)
|
|
{
|
|
EXPECT_EQ(int_ref.size(), contours[0].size());
|
|
EXPECT_MAT_NEAR(Mat(ext_ref), Mat(contours[1]), 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Draw many small 1-2px blobs and find contours
|
|
//
|
|
TEST_P(Imgproc_FindContours_Modes1, small)
|
|
{
|
|
const int mode = get<0>(GetParam());
|
|
const int method = get<1>(GetParam());
|
|
|
|
const size_t DIM = 1000;
|
|
const Size sz(DIM, DIM);
|
|
const int num = (DIM / 10) * (DIM / 10); // number of 10x10 squares
|
|
|
|
Mat img(sz, CV_8UC1, Scalar::all(0));
|
|
Mat img32s(sz, CV_32SC1, Scalar::all(0));
|
|
vector<Point> pts;
|
|
int extra_contours_32s = 0;
|
|
for (int j = 0; j < num; ++j)
|
|
{
|
|
const int kind = j % 9;
|
|
Point pt {(j % 100) * 10 + 4, (j / 100) * 10 + 4};
|
|
drawSmallContour<uchar>(img, pt, kind, 255);
|
|
drawSmallContour<int>(img32s, pt, kind, j + 1);
|
|
pts.push_back(pt);
|
|
// NOTE: for some reason these small diagonal contours (NW, SE)
|
|
// result in 2 external contours for FLOODFILL mode
|
|
if (kind == 8 || kind == 4)
|
|
++extra_contours_32s;
|
|
}
|
|
{
|
|
vector<vector<Point>> contours;
|
|
vector<vector<schar>> chains;
|
|
vector<Vec4i> hierarchy;
|
|
|
|
if (mode == RETR_FLOODFILL)
|
|
{
|
|
if (method == 0)
|
|
{
|
|
findContours(img32s, chains, hierarchy, mode, method);
|
|
ASSERT_EQ(pts.size() * 2 + extra_contours_32s, chains.size());
|
|
}
|
|
else
|
|
{
|
|
findContours(img32s, contours, hierarchy, mode, method);
|
|
ASSERT_EQ(pts.size() * 2 + extra_contours_32s, contours.size());
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (method == 0)
|
|
{
|
|
findContours(img, chains, hierarchy, mode, method);
|
|
ASSERT_EQ(pts.size(), chains.size());
|
|
}
|
|
else
|
|
{
|
|
findContours(img, contours, hierarchy, mode, method);
|
|
ASSERT_EQ(pts.size(), contours.size());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Draw many nested rectangles and find contours
|
|
//
|
|
TEST_P(Imgproc_FindContours_Modes1, deep)
|
|
{
|
|
const int mode = get<0>(GetParam());
|
|
const int method = get<1>(GetParam());
|
|
|
|
const size_t DIM = 1000;
|
|
const Size sz(DIM, DIM);
|
|
const size_t NUM = 249U;
|
|
Mat img(sz, CV_8UC1, Scalar::all(0));
|
|
Mat img32s(sz, CV_32SC1, Scalar::all(0));
|
|
Rect rect(1, 1, 998, 998);
|
|
for (size_t i = 0; i < NUM; ++i)
|
|
{
|
|
rectangle(img, rect, Scalar::all(255));
|
|
rectangle(img32s, rect, Scalar::all((double)i + 1), FILLED);
|
|
rect.x += 2;
|
|
rect.y += 2;
|
|
rect.width -= 4;
|
|
rect.height -= 4;
|
|
}
|
|
{
|
|
vector<vector<Point>> contours {{{0, 0}, {1, 1}}};
|
|
vector<vector<schar>> chains {{1, 2, 3}};
|
|
vector<Vec4i> hierarchy;
|
|
|
|
if (mode == RETR_FLOODFILL)
|
|
{
|
|
if (method == 0)
|
|
{
|
|
findContours(img32s, chains, hierarchy, mode, method);
|
|
ASSERT_EQ(2 * NUM, chains.size());
|
|
}
|
|
else
|
|
{
|
|
findContours(img32s, contours, hierarchy, mode, method);
|
|
ASSERT_EQ(2 * NUM, contours.size());
|
|
}
|
|
}
|
|
else
|
|
{
|
|
const size_t expected_count = (mode == RETR_EXTERNAL) ? 1U : 2 * NUM;
|
|
if (method == 0)
|
|
{
|
|
findContours(img, chains, hierarchy, mode, method);
|
|
ASSERT_EQ(expected_count, chains.size());
|
|
}
|
|
else
|
|
{
|
|
findContours(img, contours, hierarchy, mode, method);
|
|
ASSERT_EQ(expected_count, contours.size());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(
|
|
,
|
|
Imgproc_FindContours_Modes1,
|
|
testing::Combine(
|
|
testing::Values(RETR_EXTERNAL, RETR_LIST, RETR_CCOMP, RETR_TREE, RETR_FLOODFILL),
|
|
testing::Values(0,
|
|
CHAIN_APPROX_NONE,
|
|
CHAIN_APPROX_SIMPLE,
|
|
CHAIN_APPROX_TC89_L1,
|
|
CHAIN_APPROX_TC89_KCOS)));
|
|
|
|
//==================================================================================================
|
|
|
|
typedef testing::TestWithParam<tuple<int, int>> Imgproc_FindContours_Modes2;
|
|
|
|
// Very approximate backport of an old accuracy test
|
|
//
|
|
TEST_P(Imgproc_FindContours_Modes2, new_accuracy)
|
|
{
|
|
const int mode = get<0>(GetParam());
|
|
const int method = get<1>(GetParam());
|
|
|
|
RNG& rng = TS::ptr()->get_rng();
|
|
const int blob_count = rng.uniform(1, 10);
|
|
const Size sz(rng.uniform(640, 1920), rng.uniform(480, 1080));
|
|
const int blob_sz = 50;
|
|
|
|
// prepare image
|
|
Mat img(sz, CV_8UC1, Scalar::all(0));
|
|
vector<RotatedRect> rects;
|
|
for (int i = 0; i < blob_count; ++i)
|
|
{
|
|
const Point2f center((float)rng.uniform(blob_sz, sz.width - blob_sz),
|
|
(float)rng.uniform(blob_sz, sz.height - blob_sz));
|
|
const Size2f rsize((float)rng.uniform(1, blob_sz), (float)rng.uniform(1, blob_sz));
|
|
RotatedRect rect(center, rsize, rng.uniform(0.f, 180.f));
|
|
rects.push_back(rect);
|
|
ellipse(img, rect, Scalar::all(100), FILLED);
|
|
}
|
|
|
|
// draw contours manually
|
|
Mat cont_img(sz, CV_8UC1, Scalar::all(0));
|
|
for (int y = 1; y < sz.height - 1; ++y)
|
|
{
|
|
for (int x = 1; x < sz.width - 1; ++x)
|
|
{
|
|
if (img.at<uchar>(y, x) != 0 &&
|
|
((img.at<uchar>(y - 1, x) == 0) || (img.at<uchar>(y + 1, x) == 0) ||
|
|
(img.at<uchar>(y, x + 1) == 0) || (img.at<uchar>(y, x - 1) == 0)))
|
|
{
|
|
cont_img.at<uchar>(y, x) = 255;
|
|
}
|
|
}
|
|
}
|
|
|
|
// find contours
|
|
vector<vector<Point>> contours;
|
|
vector<Vec4i> hierarchy;
|
|
findContours(img, contours, hierarchy, mode, method);
|
|
|
|
// 0 < contours <= rects
|
|
EXPECT_GT(contours.size(), 0U);
|
|
EXPECT_GE(rects.size(), contours.size());
|
|
|
|
// draw contours
|
|
Mat res_img(sz, CV_8UC1, Scalar::all(0));
|
|
drawContours(res_img, contours);
|
|
|
|
// compare resulting drawn contours with manually drawn contours
|
|
const double diff1 = cvtest::norm(cont_img, res_img, NORM_L1) / 255;
|
|
|
|
if (method == CHAIN_APPROX_NONE || method == CHAIN_APPROX_SIMPLE)
|
|
{
|
|
EXPECT_EQ(0., diff1);
|
|
}
|
|
}
|
|
|
|
TEST_P(Imgproc_FindContours_Modes2, approx)
|
|
{
|
|
const int mode = get<0>(GetParam());
|
|
const int method = get<1>(GetParam());
|
|
|
|
const Size sz {500, 500};
|
|
Mat img = Mat::zeros(sz, CV_8UC1);
|
|
|
|
for (int c = 0; c < 4; ++c)
|
|
{
|
|
if (c != 0)
|
|
{
|
|
// noise + filter + threshold
|
|
RNG& rng = TS::ptr()->get_rng();
|
|
cvtest::randUni(rng, img, 0, 255);
|
|
|
|
Mat fimg;
|
|
boxFilter(img, fimg, CV_8U, Size(5, 5));
|
|
|
|
Mat timg;
|
|
const int level = 44 + c * 42;
|
|
// 'level' goes through:
|
|
// 86 - some black speckles on white
|
|
// 128 - 50/50 black/white
|
|
// 170 - some white speckles on black
|
|
cv::threshold(fimg, timg, level, 255, THRESH_BINARY);
|
|
}
|
|
else
|
|
{
|
|
// circle with cut
|
|
const Point center {250, 250};
|
|
const int r {20};
|
|
const Point cut {r, r};
|
|
circle(img, center, r, Scalar(255), FILLED);
|
|
rectangle(img, center, center + cut, Scalar(0), FILLED);
|
|
}
|
|
|
|
vector<vector<Point>> contours;
|
|
vector<Vec4i> hierarchy;
|
|
findContours(img, contours, hierarchy, mode, method);
|
|
|
|
// TODO: check something
|
|
}
|
|
}
|
|
|
|
// TODO: offset test
|
|
|
|
// no RETR_FLOODFILL - no CV_32S input images
|
|
INSTANTIATE_TEST_CASE_P(
|
|
,
|
|
Imgproc_FindContours_Modes2,
|
|
testing::Combine(testing::Values(RETR_EXTERNAL, RETR_LIST, RETR_CCOMP, RETR_TREE),
|
|
testing::Values(CHAIN_APPROX_NONE,
|
|
CHAIN_APPROX_SIMPLE,
|
|
CHAIN_APPROX_TC89_L1,
|
|
CHAIN_APPROX_TC89_KCOS)));
|
|
|
|
TEST(Imgproc_FindContours, link_runs)
|
|
{
|
|
const Size sz {500, 500};
|
|
Mat img = Mat::zeros(sz, CV_8UC1);
|
|
|
|
// noise + filter + threshold
|
|
RNG& rng = TS::ptr()->get_rng();
|
|
cvtest::randUni(rng, img, 0, 255);
|
|
|
|
Mat fimg;
|
|
boxFilter(img, fimg, CV_8U, Size(5, 5));
|
|
|
|
const int level = 135;
|
|
cv::threshold(fimg, img, level, 255, THRESH_BINARY);
|
|
|
|
vector<vector<Point>> contours;
|
|
vector<Vec4i> hierarchy;
|
|
findContoursLinkRuns(img, contours, hierarchy);
|
|
|
|
if (cvtest::debugLevel >= 10)
|
|
{
|
|
print_pts_2(contours);
|
|
|
|
Mat res = Mat::zeros(sz, CV_8UC1);
|
|
drawContours(res, contours);
|
|
imshow("res", res);
|
|
imshow("img", img);
|
|
waitKey(0);
|
|
}
|
|
}
|
|
|
|
}} // namespace opencv_test
|