mirror of
https://github.com/opencv/opencv.git
synced 2025-01-12 07:42:32 +08:00
154 lines
5.7 KiB
C++
154 lines
5.7 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
BIGDATA_TEST(Imgproc_Threshold, huge)
|
|
{
|
|
Mat m(65000, 40000, CV_8U);
|
|
ASSERT_FALSE(m.isContinuous());
|
|
|
|
uint64 i, n = (uint64)m.rows*m.cols;
|
|
for( i = 0; i < n; i++ )
|
|
m.data[i] = (uchar)(i & 255);
|
|
|
|
cv::threshold(m, m, 127, 255, cv::THRESH_BINARY);
|
|
int nz = cv::countNonZero(m); // FIXIT 'int' is not enough here (overflow is possible with other inputs)
|
|
ASSERT_EQ((uint64)nz, n / 2);
|
|
}
|
|
|
|
TEST(Imgproc_Threshold, regression_THRESH_TOZERO_IPP_16085)
|
|
{
|
|
Size sz(16, 16);
|
|
Mat input(sz, CV_32F, Scalar::all(2));
|
|
Mat result;
|
|
cv::threshold(input, result, 2.0, 0.0, THRESH_TOZERO);
|
|
EXPECT_EQ(0, cv::norm(result, NORM_INF));
|
|
}
|
|
|
|
TEST(Imgproc_Threshold, regression_THRESH_TOZERO_IPP_21258)
|
|
{
|
|
Size sz(16, 16);
|
|
float val = nextafterf(16.0f, 0.0f); // 0x417fffff, all bits in mantissa are 1
|
|
Mat input(sz, CV_32F, Scalar::all(val));
|
|
Mat result;
|
|
cv::threshold(input, result, val, 0.0, THRESH_TOZERO);
|
|
EXPECT_EQ(0, cv::norm(result, NORM_INF));
|
|
}
|
|
|
|
TEST(Imgproc_Threshold, regression_THRESH_TOZERO_IPP_21258_Min)
|
|
{
|
|
Size sz(16, 16);
|
|
float min_val = -std::numeric_limits<float>::max();
|
|
Mat input(sz, CV_32F, Scalar::all(min_val));
|
|
Mat result;
|
|
cv::threshold(input, result, min_val, 0.0, THRESH_TOZERO);
|
|
EXPECT_EQ(0, cv::norm(result, NORM_INF));
|
|
}
|
|
|
|
TEST(Imgproc_Threshold, regression_THRESH_TOZERO_IPP_21258_Max)
|
|
{
|
|
Size sz(16, 16);
|
|
float max_val = std::numeric_limits<float>::max();
|
|
Mat input(sz, CV_32F, Scalar::all(max_val));
|
|
Mat result;
|
|
cv::threshold(input, result, max_val, 0.0, THRESH_TOZERO);
|
|
EXPECT_EQ(0, cv::norm(result, NORM_INF));
|
|
}
|
|
|
|
TEST(Imgproc_AdaptiveThreshold, mean)
|
|
{
|
|
const string input_path = cvtest::findDataFile("../cv/shared/baboon.png");
|
|
Mat input = imread(input_path, IMREAD_GRAYSCALE);
|
|
Mat result;
|
|
|
|
cv::adaptiveThreshold(input, result, 255, ADAPTIVE_THRESH_MEAN_C, THRESH_BINARY, 15, 8);
|
|
|
|
const string gt_path = cvtest::findDataFile("../cv/imgproc/adaptive_threshold1.png");
|
|
Mat gt = imread(gt_path, IMREAD_GRAYSCALE);
|
|
EXPECT_EQ(0, cv::norm(result, gt, NORM_INF));
|
|
}
|
|
|
|
TEST(Imgproc_AdaptiveThreshold, mean_inv)
|
|
{
|
|
const string input_path = cvtest::findDataFile("../cv/shared/baboon.png");
|
|
Mat input = imread(input_path, IMREAD_GRAYSCALE);
|
|
Mat result;
|
|
|
|
cv::adaptiveThreshold(input, result, 255, ADAPTIVE_THRESH_MEAN_C, THRESH_BINARY_INV, 15, 8);
|
|
|
|
const string gt_path = cvtest::findDataFile("../cv/imgproc/adaptive_threshold1.png");
|
|
Mat gt = imread(gt_path, IMREAD_GRAYSCALE);
|
|
gt = Mat(gt.rows, gt.cols, CV_8UC1, cv::Scalar(255)) - gt;
|
|
EXPECT_EQ(0, cv::norm(result, gt, NORM_INF));
|
|
}
|
|
|
|
TEST(Imgproc_AdaptiveThreshold, gauss)
|
|
{
|
|
const string input_path = cvtest::findDataFile("../cv/shared/baboon.png");
|
|
Mat input = imread(input_path, IMREAD_GRAYSCALE);
|
|
Mat result;
|
|
|
|
cv::adaptiveThreshold(input, result, 200, ADAPTIVE_THRESH_GAUSSIAN_C, THRESH_BINARY, 21, -5);
|
|
|
|
const string gt_path = cvtest::findDataFile("../cv/imgproc/adaptive_threshold2.png");
|
|
Mat gt = imread(gt_path, IMREAD_GRAYSCALE);
|
|
EXPECT_EQ(0, cv::norm(result, gt, NORM_INF));
|
|
}
|
|
|
|
TEST(Imgproc_AdaptiveThreshold, gauss_inv)
|
|
{
|
|
const string input_path = cvtest::findDataFile("../cv/shared/baboon.png");
|
|
Mat input = imread(input_path, IMREAD_GRAYSCALE);
|
|
Mat result;
|
|
|
|
cv::adaptiveThreshold(input, result, 200, ADAPTIVE_THRESH_GAUSSIAN_C, THRESH_BINARY_INV, 21, -5);
|
|
|
|
const string gt_path = cvtest::findDataFile("../cv/imgproc/adaptive_threshold2.png");
|
|
Mat gt = imread(gt_path, IMREAD_GRAYSCALE);
|
|
gt = Mat(gt.rows, gt.cols, CV_8UC1, cv::Scalar(200)) - gt;
|
|
EXPECT_EQ(0, cv::norm(result, gt, NORM_INF));
|
|
}
|
|
|
|
}} // namespace
|