opencv/modules/gpu/test/test_matop.cpp
Vladislav Vinogradov ade7394e77 refactored and fixed bugs in gpu warp functions (remap, resize, warpAffine, warpPerspective)
wrote more complicated tests for them
implemented own version of warpAffine and warpPerspective for different border interpolation types
refactored some gpu tests
2012-03-14 15:54:17 +00:00

560 lines
14 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other GpuMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or bpied warranties, including, but not limited to, the bpied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#ifdef HAVE_CUDA
using namespace cvtest;
using namespace testing;
////////////////////////////////////////////////////////////////////////////////
// merge
PARAM_TEST_CASE(Merge, cv::gpu::DeviceInfo, MatType, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
int type;
bool useRoi;
cv::Size size;
std::vector<cv::Mat> src;
cv::Mat dst_gold;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
type = GET_PARAM(1);
useRoi = GET_PARAM(2);
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
size = cv::Size(rng.uniform(20, 150), rng.uniform(20, 150));
int depth = CV_MAT_DEPTH(type);
int num_channels = CV_MAT_CN(type);
src.reserve(num_channels);
for (int i = 0; i < num_channels; ++i)
src.push_back(cv::Mat(size, depth, cv::Scalar::all(i)));
cv::merge(src, dst_gold);
}
};
TEST_P(Merge, Accuracy)
{
if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
return;
cv::Mat dst;
std::vector<cv::gpu::GpuMat> dev_src;
cv::gpu::GpuMat dev_dst;
for (size_t i = 0; i < src.size(); ++i)
dev_src.push_back(loadMat(src[i], useRoi));
cv::gpu::merge(dev_src, dev_dst);
dev_dst.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
INSTANTIATE_TEST_CASE_P(MatOp, Merge, Combine(
ALL_DEVICES,
ALL_TYPES,
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
// split
PARAM_TEST_CASE(Split, cv::gpu::DeviceInfo, MatType, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
int type;
bool useRoi;
cv::Size size;
cv::Mat src;
std::vector<cv::Mat> dst_gold;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
type = GET_PARAM(1);
useRoi = GET_PARAM(2);
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
size = cv::Size(rng.uniform(20, 150), rng.uniform(20, 150));
src.create(size, type);
src.setTo(cv::Scalar(1.0, 2.0, 3.0, 4.0));
cv::split(src, dst_gold);
}
};
TEST_P(Split, Accuracy)
{
if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
return;
std::vector<cv::Mat> dst;
std::vector<cv::gpu::GpuMat> dev_dst;
cv::gpu::split(loadMat(src, useRoi), dev_dst);
dst.resize(dev_dst.size());
for (size_t i = 0; i < dev_dst.size(); ++i)
dev_dst[i].download(dst[i]);
ASSERT_EQ(dst_gold.size(), dst.size());
for (size_t i = 0; i < dst_gold.size(); ++i)
{
EXPECT_MAT_NEAR(dst_gold[i], dst[i], 0.0);
}
}
INSTANTIATE_TEST_CASE_P(MatOp, Split, Combine(
ALL_DEVICES,
ALL_TYPES,
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
// split_merge_consistency
PARAM_TEST_CASE(SplitMerge, cv::gpu::DeviceInfo, MatType)
{
cv::gpu::DeviceInfo devInfo;
int type;
cv::Size size;
cv::Mat orig;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
type = GET_PARAM(1);
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
size = cv::Size(rng.uniform(20, 150), rng.uniform(20, 150));
orig.create(size, type);
orig.setTo(cv::Scalar(1.0, 2.0, 3.0, 4.0));
}
};
TEST_P(SplitMerge, Consistency)
{
if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
return;
cv::Mat final;
std::vector<cv::gpu::GpuMat> dev_vec;
cv::gpu::GpuMat dev_final;
cv::gpu::split(loadMat(orig), dev_vec);
cv::gpu::merge(dev_vec, dev_final);
dev_final.download(final);
EXPECT_MAT_NEAR(orig, final, 0.0);
}
INSTANTIATE_TEST_CASE_P(MatOp, SplitMerge, Combine(
ALL_DEVICES,
ALL_TYPES));
////////////////////////////////////////////////////////////////////////////////
// setTo
PARAM_TEST_CASE(SetTo, cv::gpu::DeviceInfo, MatType, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
int type;
bool useRoi;
cv::Size size;
cv::Mat mat_gold;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
type = GET_PARAM(1);
useRoi = GET_PARAM(2);
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
size = cv::Size(rng.uniform(20, 150), rng.uniform(20, 150));
mat_gold.create(size, type);
}
};
TEST_P(SetTo, Zero)
{
if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
return;
cv::Scalar zero = cv::Scalar::all(0);
cv::Mat mat;
cv::gpu::GpuMat dev_mat = loadMat(mat_gold, useRoi);
mat_gold.setTo(zero);
dev_mat.setTo(zero);
dev_mat.download(mat);
EXPECT_MAT_NEAR(mat_gold, mat, 0.0);
}
TEST_P(SetTo, SameVal)
{
if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
return;
cv::Scalar s = cv::Scalar::all(1);
cv::Mat mat;
cv::gpu::GpuMat dev_mat(mat_gold);
mat_gold.setTo(s);
dev_mat.setTo(s);
dev_mat.download(mat);
EXPECT_MAT_NEAR(mat_gold, mat, 0.0);
}
TEST_P(SetTo, DifferentVal)
{
if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
return;
cv::Scalar s = cv::Scalar(1, 2, 3, 4);
cv::Mat mat;
cv::gpu::GpuMat dev_mat = loadMat(mat_gold, useRoi);
mat_gold.setTo(s);
dev_mat.setTo(s);
dev_mat.download(mat);
EXPECT_MAT_NEAR(mat_gold, mat, 0.0);
}
TEST_P(SetTo, Masked)
{
if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
return;
cv::Scalar s = cv::Scalar(1, 2, 3, 4);
cv::RNG& rng = TS::ptr()->get_rng();
cv::Mat mask = randomMat(rng, mat_gold.size(), CV_8UC1, 0.0, 1.5, false);
cv::Mat mat;
cv::gpu::GpuMat dev_mat = loadMat(mat_gold, useRoi);
mat_gold.setTo(s, mask);
dev_mat.setTo(s, loadMat(mask, useRoi));
dev_mat.download(mat);
EXPECT_MAT_NEAR(mat_gold, mat, 0.0);
}
INSTANTIATE_TEST_CASE_P(MatOp, SetTo, Combine(
ALL_DEVICES,
ALL_TYPES,
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
// copyTo
PARAM_TEST_CASE(CopyTo, cv::gpu::DeviceInfo, MatType, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
int type;
bool useRoi;
cv::Size size;
cv::Mat src;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
type = GET_PARAM(1);
useRoi = GET_PARAM(2);
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
size = cv::Size(rng.uniform(20, 150), rng.uniform(20, 150));
src = randomMat(rng, size, type, 0.0, 127.0, false);
}
};
TEST_P(CopyTo, WithoutMask)
{
if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
return;
cv::Mat dst_gold;
src.copyTo(dst_gold);
cv::Mat dst;
cv::gpu::GpuMat dev_src = loadMat(src, useRoi);
cv::gpu::GpuMat dev_dst = loadMat(src, useRoi);
dev_src.copyTo(dev_dst);
dev_dst.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
TEST_P(CopyTo, Masked)
{
if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
return;
cv::RNG& rng = TS::ptr()->get_rng();
cv::Mat mask = randomMat(rng, src.size(), CV_8UC1, 0.0, 2.0, false);
cv::Mat zeroMat(src.size(), src.type(), cv::Scalar::all(0));
cv::Mat dst_gold = zeroMat.clone();
src.copyTo(dst_gold, mask);
cv::Mat dst;
cv::gpu::GpuMat dev_src = loadMat(src, useRoi);
cv::gpu::GpuMat dev_dst = loadMat(zeroMat, useRoi);
dev_src.copyTo(dev_dst, loadMat(mask, useRoi));
dev_dst.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
INSTANTIATE_TEST_CASE_P(MatOp, CopyTo, Combine(
ALL_DEVICES,
ALL_TYPES,
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
// convertTo
PARAM_TEST_CASE(ConvertTo, cv::gpu::DeviceInfo, MatType, MatType, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
int depth1;
int depth2;
bool useRoi;
cv::Size size;
cv::Mat src;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
depth1 = GET_PARAM(1);
depth2 = GET_PARAM(2);
useRoi = GET_PARAM(3);
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
size = cv::Size(rng.uniform(20, 150), rng.uniform(20, 150));
src = randomMat(rng, size, depth1, 0.0, 127.0, false);
}
};
TEST_P(ConvertTo, WithoutScaling)
{
if ((depth1 == CV_64F || depth2 == CV_64F) && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
return;
cv::Mat dst_gold;
src.convertTo(dst_gold, depth2);
cv::Mat dst;
cv::gpu::GpuMat dev_src = loadMat(src, useRoi);
cv::gpu::GpuMat dev_dst;
dev_src.convertTo(dev_dst, depth2);
dev_dst.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
TEST_P(ConvertTo, WithScaling)
{
if ((depth1 == CV_64F || depth2 == CV_64F) && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
return;
cv::RNG& rng = TS::ptr()->get_rng();
const double a = rng.uniform(0.0, 1.0);
const double b = rng.uniform(-10.0, 10.0);
cv::Mat dst_gold;
src.convertTo(dst_gold, depth2, a, b);
cv::Mat dst;
cv::gpu::GpuMat dev_src = loadMat(src, useRoi);
cv::gpu::GpuMat dev_dst;
dev_src.convertTo(dev_dst, depth2, a, b);
dev_dst.download(dst);
const double eps = depth2 < CV_32F ? 1 : 1e-4;
EXPECT_MAT_NEAR(dst_gold, dst, eps);
}
INSTANTIATE_TEST_CASE_P(MatOp, ConvertTo, Combine(
ALL_DEVICES,
TYPES(CV_8U, CV_64F, 1, 1),
TYPES(CV_8U, CV_64F, 1, 1),
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
// async
struct Async : TestWithParam<cv::gpu::DeviceInfo>
{
cv::gpu::DeviceInfo devInfo;
cv::gpu::CudaMem src;
cv::Mat dst_gold0;
cv::Mat dst_gold1;
virtual void SetUp()
{
devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
int rows = rng.uniform(100, 200);
int cols = rng.uniform(100, 200);
src = cv::gpu::CudaMem(cv::Mat::zeros(rows, cols, CV_8UC1));
dst_gold0 = cv::Mat(rows, cols, CV_8UC1, cv::Scalar::all(255));
dst_gold1 = cv::Mat(rows, cols, CV_8UC1, cv::Scalar::all(128));
}
};
TEST_P(Async, Accuracy)
{
cv::Mat dst0, dst1;
cv::gpu::CudaMem cpudst0;
cv::gpu::CudaMem cpudst1;
cv::gpu::GpuMat gpusrc;
cv::gpu::GpuMat gpudst0;
cv::gpu::GpuMat gpudst1(src.rows, src.cols, CV_8UC1);
cv::gpu::Stream stream0;
cv::gpu::Stream stream1;
stream0.enqueueUpload(src, gpusrc);
cv::gpu::bitwise_not(gpusrc, gpudst0, cv::gpu::GpuMat(), stream0);
stream0.enqueueDownload(gpudst0, cpudst0);
stream1.enqueueMemSet(gpudst1, cv::Scalar::all(128));
stream1.enqueueDownload(gpudst1, cpudst1);
stream0.waitForCompletion();
stream1.waitForCompletion();
dst0 = cpudst0.createMatHeader();
dst1 = cpudst1.createMatHeader();
EXPECT_MAT_NEAR(dst_gold0, dst0, 0.0);
EXPECT_MAT_NEAR(dst_gold1, dst1, 0.0);
}
INSTANTIATE_TEST_CASE_P(MatOp, Async, ALL_DEVICES);
#endif // HAVE_CUDA