opencv/modules/haartraining/haartraining.cpp

285 lines
9.4 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/*
* haartraining.cpp
*
* Train cascade classifier
*/
#include <cstdio>
#include <cstring>
#include <cstdlib>
using namespace std;
#include "cvhaartraining.h"
int main( int argc, char* argv[] )
{
int i = 0;
char* nullname = (char*)"(NULL)";
char* vecname = NULL;
char* dirname = NULL;
char* bgname = NULL;
bool bg_vecfile = false;
int npos = 2000;
int nneg = 2000;
int nstages = 14;
int mem = 200;
int nsplits = 1;
float minhitrate = 0.995F;
float maxfalsealarm = 0.5F;
float weightfraction = 0.95F;
int mode = 0;
int symmetric = 1;
int equalweights = 0;
int width = 24;
int height = 24;
const char* boosttypes[] = { "DAB", "RAB", "LB", "GAB" };
int boosttype = 3;
const char* stumperrors[] = { "misclass", "gini", "entropy" };
int stumperror = 0;
int maxtreesplits = 0;
int minpos = 500;
if( argc == 1 )
{
printf( "Usage: %s\n -data <dir_name>\n"
" -vec <vec_file_name>\n"
" -bg <background_file_name>\n"
" [-bg-vecfile]\n"
" [-npos <number_of_positive_samples = %d>]\n"
" [-nneg <number_of_negative_samples = %d>]\n"
" [-nstages <number_of_stages = %d>]\n"
" [-nsplits <number_of_splits = %d>]\n"
" [-mem <memory_in_MB = %d>]\n"
" [-sym (default)] [-nonsym]\n"
" [-minhitrate <min_hit_rate = %f>]\n"
" [-maxfalsealarm <max_false_alarm_rate = %f>]\n"
" [-weighttrimming <weight_trimming = %f>]\n"
" [-eqw]\n"
" [-mode <BASIC (default) | CORE | ALL>]\n"
" [-w <sample_width = %d>]\n"
" [-h <sample_height = %d>]\n"
" [-bt <DAB | RAB | LB | GAB (default)>]\n"
" [-err <misclass (default) | gini | entropy>]\n"
" [-maxtreesplits <max_number_of_splits_in_tree_cascade = %d>]\n"
" [-minpos <min_number_of_positive_samples_per_cluster = %d>]\n",
argv[0], npos, nneg, nstages, nsplits, mem,
minhitrate, maxfalsealarm, weightfraction, width, height,
maxtreesplits, minpos );
return 0;
}
for( i = 1; i < argc; i++ )
{
if( !strcmp( argv[i], "-data" ) )
{
dirname = argv[++i];
}
else if( !strcmp( argv[i], "-vec" ) )
{
vecname = argv[++i];
}
else if( !strcmp( argv[i], "-bg" ) )
{
bgname = argv[++i];
}
else if( !strcmp( argv[i], "-bg-vecfile" ) )
{
bg_vecfile = true;
}
else if( !strcmp( argv[i], "-npos" ) )
{
npos = atoi( argv[++i] );
}
else if( !strcmp( argv[i], "-nneg" ) )
{
nneg = atoi( argv[++i] );
}
else if( !strcmp( argv[i], "-nstages" ) )
{
nstages = atoi( argv[++i] );
}
else if( !strcmp( argv[i], "-nsplits" ) )
{
nsplits = atoi( argv[++i] );
}
else if( !strcmp( argv[i], "-mem" ) )
{
mem = atoi( argv[++i] );
}
else if( !strcmp( argv[i], "-sym" ) )
{
symmetric = 1;
}
else if( !strcmp( argv[i], "-nonsym" ) )
{
symmetric = 0;
}
else if( !strcmp( argv[i], "-minhitrate" ) )
{
minhitrate = (float) atof( argv[++i] );
}
else if( !strcmp( argv[i], "-maxfalsealarm" ) )
{
maxfalsealarm = (float) atof( argv[++i] );
}
else if( !strcmp( argv[i], "-weighttrimming" ) )
{
weightfraction = (float) atof( argv[++i] );
}
else if( !strcmp( argv[i], "-eqw" ) )
{
equalweights = 1;
}
else if( !strcmp( argv[i], "-mode" ) )
{
char* tmp = argv[++i];
if( !strcmp( tmp, "CORE" ) )
{
mode = 1;
}
else if( !strcmp( tmp, "ALL" ) )
{
mode = 2;
}
else
{
mode = 0;
}
}
else if( !strcmp( argv[i], "-w" ) )
{
width = atoi( argv[++i] );
}
else if( !strcmp( argv[i], "-h" ) )
{
height = atoi( argv[++i] );
}
else if( !strcmp( argv[i], "-bt" ) )
{
i++;
if( !strcmp( argv[i], boosttypes[0] ) )
{
boosttype = 0;
}
else if( !strcmp( argv[i], boosttypes[1] ) )
{
boosttype = 1;
}
else if( !strcmp( argv[i], boosttypes[2] ) )
{
boosttype = 2;
}
else
{
boosttype = 3;
}
}
else if( !strcmp( argv[i], "-err" ) )
{
i++;
if( !strcmp( argv[i], stumperrors[0] ) )
{
stumperror = 0;
}
else if( !strcmp( argv[i], stumperrors[1] ) )
{
stumperror = 1;
}
else
{
stumperror = 2;
}
}
else if( !strcmp( argv[i], "-maxtreesplits" ) )
{
maxtreesplits = atoi( argv[++i] );
}
else if( !strcmp( argv[i], "-minpos" ) )
{
minpos = atoi( argv[++i] );
}
}
printf( "Data dir name: %s\n", ((dirname == NULL) ? nullname : dirname ) );
printf( "Vec file name: %s\n", ((vecname == NULL) ? nullname : vecname ) );
printf( "BG file name: %s, is a vecfile: %s\n", ((bgname == NULL) ? nullname : bgname ), bg_vecfile ? "yes" : "no" );
printf( "Num pos: %d\n", npos );
printf( "Num neg: %d\n", nneg );
printf( "Num stages: %d\n", nstages );
printf( "Num splits: %d (%s as weak classifier)\n", nsplits,
(nsplits == 1) ? "stump" : "tree" );
printf( "Mem: %d MB\n", mem );
printf( "Symmetric: %s\n", (symmetric) ? "TRUE" : "FALSE" );
printf( "Min hit rate: %f\n", minhitrate );
printf( "Max false alarm rate: %f\n", maxfalsealarm );
printf( "Weight trimming: %f\n", weightfraction );
printf( "Equal weights: %s\n", (equalweights) ? "TRUE" : "FALSE" );
printf( "Mode: %s\n", ( (mode == 0) ? "BASIC" : ( (mode == 1) ? "CORE" : "ALL") ) );
printf( "Width: %d\n", width );
printf( "Height: %d\n", height );
//printf( "Max num of precalculated features: %d\n", numprecalculated );
printf( "Applied boosting algorithm: %s\n", boosttypes[boosttype] );
printf( "Error (valid only for Discrete and Real AdaBoost): %s\n",
stumperrors[stumperror] );
printf( "Max number of splits in tree cascade: %d\n", maxtreesplits );
printf( "Min number of positive samples per cluster: %d\n", minpos );
cvCreateTreeCascadeClassifier( dirname, vecname, bgname,
npos, nneg, nstages, mem,
nsplits,
minhitrate, maxfalsealarm, weightfraction,
mode, symmetric,
equalweights, width, height,
boosttype, stumperror,
maxtreesplits, minpos, bg_vecfile );
return 0;
}