mirror of
https://github.com/opencv/opencv.git
synced 2024-12-16 02:19:12 +08:00
a64b51dd94
Usage of imread(): magic number 0, unchecked result * docs: rewrite 0/1 to IMREAD_GRAYSCALE/IMREAD_COLOR in imread() * samples, apps: rewrite 0/1 to IMREAD_GRAYSCALE/IMREAD_COLOR in imread() * tests: rewrite 0/1 to IMREAD_GRAYSCALE/IMREAD_COLOR in imread() * doc/py_tutorials: check imread() result
805 lines
31 KiB
C++
805 lines
31 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
namespace opencv_test {
|
|
namespace {
|
|
|
|
class CV_ConnectedComponentsTest : public cvtest::BaseTest
|
|
{
|
|
public:
|
|
CV_ConnectedComponentsTest();
|
|
~CV_ConnectedComponentsTest();
|
|
protected:
|
|
void run(int);
|
|
};
|
|
|
|
CV_ConnectedComponentsTest::CV_ConnectedComponentsTest() {}
|
|
CV_ConnectedComponentsTest::~CV_ConnectedComponentsTest() {}
|
|
|
|
// This function force a row major order for the labels
|
|
void normalizeLabels(Mat1i& imgLabels, int iNumLabels) {
|
|
vector<int> vecNewLabels(iNumLabels + 1, 0);
|
|
int iMaxNewLabel = 0;
|
|
|
|
for (int r = 0; r < imgLabels.rows; ++r) {
|
|
for (int c = 0; c < imgLabels.cols; ++c) {
|
|
int iCurLabel = imgLabels(r, c);
|
|
if (iCurLabel > 0) {
|
|
if (vecNewLabels[iCurLabel] == 0) {
|
|
vecNewLabels[iCurLabel] = ++iMaxNewLabel;
|
|
}
|
|
imgLabels(r, c) = vecNewLabels[iCurLabel];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void CV_ConnectedComponentsTest::run(int /* start_from */)
|
|
{
|
|
|
|
int ccltype[] = { cv::CCL_DEFAULT, cv::CCL_WU, cv::CCL_GRANA, cv::CCL_BOLELLI, cv::CCL_SAUF, cv::CCL_BBDT, cv::CCL_SPAGHETTI };
|
|
|
|
string exp_path = string(ts->get_data_path()) + "connectedcomponents/ccomp_exp.png";
|
|
Mat exp = imread(exp_path, IMREAD_GRAYSCALE);
|
|
Mat orig = imread(string(ts->get_data_path()) + "connectedcomponents/concentric_circles.png", 0);
|
|
|
|
if (orig.empty())
|
|
{
|
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
|
return;
|
|
}
|
|
|
|
Mat bw = orig > 128;
|
|
|
|
for (uint cclt = 0; cclt < sizeof(ccltype) / sizeof(int); ++cclt)
|
|
{
|
|
|
|
Mat1i labelImage;
|
|
int nLabels = connectedComponents(bw, labelImage, 8, CV_32S, ccltype[cclt]);
|
|
|
|
normalizeLabels(labelImage, nLabels);
|
|
|
|
// Validate test results
|
|
for (int r = 0; r < labelImage.rows; ++r) {
|
|
for (int c = 0; c < labelImage.cols; ++c) {
|
|
int l = labelImage.at<int>(r, c);
|
|
bool pass = l >= 0 && l <= nLabels;
|
|
if (!pass) {
|
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (exp.empty() || orig.size() != exp.size())
|
|
{
|
|
imwrite(exp_path, labelImage);
|
|
exp = labelImage;
|
|
}
|
|
|
|
if (0 != cvtest::norm(labelImage > 0, exp > 0, NORM_INF))
|
|
{
|
|
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
|
|
return;
|
|
}
|
|
if (nLabels != cvtest::norm(labelImage, NORM_INF) + 1)
|
|
{
|
|
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
|
|
return;
|
|
}
|
|
|
|
}
|
|
|
|
ts->set_failed_test_info(cvtest::TS::OK);
|
|
}
|
|
|
|
TEST(Imgproc_ConnectedComponents, regression) { CV_ConnectedComponentsTest test; test.safe_run(); }
|
|
|
|
TEST(Imgproc_ConnectedComponents, grana_buffer_overflow)
|
|
{
|
|
cv::Mat darkMask;
|
|
darkMask.create(31, 87, CV_8U);
|
|
darkMask = 0;
|
|
|
|
cv::Mat labels;
|
|
cv::Mat stats;
|
|
cv::Mat centroids;
|
|
|
|
int nbComponents = cv::connectedComponentsWithStats(darkMask, labels, stats, centroids, 8, CV_32S, cv::CCL_GRANA);
|
|
EXPECT_EQ(1, nbComponents);
|
|
}
|
|
|
|
static cv::Mat createCrashMat(int numThreads) {
|
|
const int h = numThreads * 4 * 2 + 8;
|
|
const double nParallelStripes = std::max(1, std::min(h / 2, numThreads * 4));
|
|
const int w = 4;
|
|
|
|
const int nstripes = cvRound(nParallelStripes <= 0 ? h : MIN(MAX(nParallelStripes, 1.), h));
|
|
const cv::Range stripeRange(0, nstripes);
|
|
const cv::Range wholeRange(0, h);
|
|
|
|
cv::Mat m(h, w, CV_8U);
|
|
m = 0;
|
|
|
|
// Look for a range that starts with odd value and ends with even value
|
|
cv::Range bugRange;
|
|
for (int s = stripeRange.start; s < stripeRange.end; s++) {
|
|
cv::Range sr(s, s + 1);
|
|
cv::Range r;
|
|
r.start = (int)(wholeRange.start +
|
|
((uint64)sr.start * (wholeRange.end - wholeRange.start) + nstripes / 2) / nstripes);
|
|
r.end = sr.end >= nstripes ?
|
|
wholeRange.end :
|
|
(int)(wholeRange.start +
|
|
((uint64)sr.end * (wholeRange.end - wholeRange.start) + nstripes / 2) / nstripes);
|
|
|
|
if (r.start > 0 && r.start % 2 == 1 && r.end % 2 == 0 && r.end >= r.start + 2) {
|
|
bugRange = r;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (bugRange.empty()) { // Could not create a buggy range
|
|
return m;
|
|
}
|
|
|
|
// Fill in bug Range
|
|
for (int x = 1; x < w; x++) {
|
|
m.at<char>(bugRange.start - 1, x) = 1;
|
|
}
|
|
|
|
m.at<char>(bugRange.start + 0, 0) = 1;
|
|
m.at<char>(bugRange.start + 0, 1) = 1;
|
|
m.at<char>(bugRange.start + 0, 3) = 1;
|
|
m.at<char>(bugRange.start + 1, 1) = 1;
|
|
m.at<char>(bugRange.start + 2, 1) = 1;
|
|
m.at<char>(bugRange.start + 2, 3) = 1;
|
|
m.at<char>(bugRange.start + 3, 0) = 1;
|
|
m.at<char>(bugRange.start + 3, 1) = 1;
|
|
|
|
return m;
|
|
}
|
|
|
|
TEST(Imgproc_ConnectedComponents, parallel_wu_labels)
|
|
{
|
|
cv::Mat mat = createCrashMat(cv::getNumThreads());
|
|
if (mat.empty()) {
|
|
return;
|
|
}
|
|
|
|
const int nbPixels = cv::countNonZero(mat);
|
|
|
|
cv::Mat labels;
|
|
cv::Mat stats;
|
|
cv::Mat centroids;
|
|
int nb = 0;
|
|
EXPECT_NO_THROW(nb = cv::connectedComponentsWithStats(mat, labels, stats, centroids, 8, CV_32S, cv::CCL_WU));
|
|
|
|
int area = 0;
|
|
for (int i = 1; i < nb; ++i) {
|
|
area += stats.at<int32_t>(i, cv::CC_STAT_AREA);
|
|
}
|
|
|
|
EXPECT_EQ(nbPixels, area);
|
|
}
|
|
|
|
TEST(Imgproc_ConnectedComponents, missing_background_pixels)
|
|
{
|
|
cv::Mat m = Mat::ones(10, 10, CV_8U);
|
|
cv::Mat labels;
|
|
cv::Mat stats;
|
|
cv::Mat centroids;
|
|
EXPECT_NO_THROW(cv::connectedComponentsWithStats(m, labels, stats, centroids, 8, CV_32S, cv::CCL_WU));
|
|
EXPECT_EQ(stats.at<int32_t>(0, cv::CC_STAT_WIDTH), 0);
|
|
EXPECT_EQ(stats.at<int32_t>(0, cv::CC_STAT_HEIGHT), 0);
|
|
EXPECT_EQ(stats.at<int32_t>(0, cv::CC_STAT_LEFT), -1);
|
|
EXPECT_TRUE(std::isnan(centroids.at<double>(0, 0)));
|
|
EXPECT_TRUE(std::isnan(centroids.at<double>(0, 1)));
|
|
}
|
|
|
|
TEST(Imgproc_ConnectedComponents, spaghetti_bbdt_sauf_stats)
|
|
{
|
|
cv::Mat1b img(16, 16);
|
|
img << 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0,
|
|
0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0,
|
|
0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0,
|
|
0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0,
|
|
0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1,
|
|
0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1,
|
|
0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
|
|
|
|
cv::Mat1i labels;
|
|
cv::Mat1i stats;
|
|
cv::Mat1d centroids;
|
|
|
|
int ccltype[] = { cv::CCL_WU, cv::CCL_GRANA, cv::CCL_BOLELLI, cv::CCL_SAUF, cv::CCL_BBDT, cv::CCL_SPAGHETTI };
|
|
|
|
for (uint cclt = 0; cclt < sizeof(ccltype) / sizeof(int); ++cclt) {
|
|
|
|
EXPECT_NO_THROW(cv::connectedComponentsWithStats(img, labels, stats, centroids, 8, CV_32S, ccltype[cclt]));
|
|
EXPECT_EQ(stats(0, cv::CC_STAT_LEFT), 0);
|
|
EXPECT_EQ(stats(0, cv::CC_STAT_TOP), 0);
|
|
EXPECT_EQ(stats(0, cv::CC_STAT_WIDTH), 16);
|
|
EXPECT_EQ(stats(0, cv::CC_STAT_HEIGHT), 15);
|
|
EXPECT_EQ(stats(0, cv::CC_STAT_AREA), 144);
|
|
|
|
EXPECT_EQ(stats(1, cv::CC_STAT_LEFT), 1);
|
|
EXPECT_EQ(stats(1, cv::CC_STAT_TOP), 1);
|
|
EXPECT_EQ(stats(1, cv::CC_STAT_WIDTH), 3);
|
|
EXPECT_EQ(stats(1, cv::CC_STAT_HEIGHT), 3);
|
|
EXPECT_EQ(stats(1, cv::CC_STAT_AREA), 9);
|
|
|
|
EXPECT_EQ(stats(2, cv::CC_STAT_LEFT), 1);
|
|
EXPECT_EQ(stats(2, cv::CC_STAT_TOP), 1);
|
|
EXPECT_EQ(stats(2, cv::CC_STAT_WIDTH), 8);
|
|
EXPECT_EQ(stats(2, cv::CC_STAT_HEIGHT), 7);
|
|
EXPECT_EQ(stats(2, cv::CC_STAT_AREA), 40);
|
|
|
|
EXPECT_EQ(stats(3, cv::CC_STAT_LEFT), 10);
|
|
EXPECT_EQ(stats(3, cv::CC_STAT_TOP), 2);
|
|
EXPECT_EQ(stats(3, cv::CC_STAT_WIDTH), 5);
|
|
EXPECT_EQ(stats(3, cv::CC_STAT_HEIGHT), 2);
|
|
EXPECT_EQ(stats(3, cv::CC_STAT_AREA), 8);
|
|
|
|
EXPECT_EQ(stats(4, cv::CC_STAT_LEFT), 11);
|
|
EXPECT_EQ(stats(4, cv::CC_STAT_TOP), 5);
|
|
EXPECT_EQ(stats(4, cv::CC_STAT_WIDTH), 3);
|
|
EXPECT_EQ(stats(4, cv::CC_STAT_HEIGHT), 3);
|
|
EXPECT_EQ(stats(4, cv::CC_STAT_AREA), 9);
|
|
|
|
EXPECT_EQ(stats(5, cv::CC_STAT_LEFT), 2);
|
|
EXPECT_EQ(stats(5, cv::CC_STAT_TOP), 9);
|
|
EXPECT_EQ(stats(5, cv::CC_STAT_WIDTH), 1);
|
|
EXPECT_EQ(stats(5, cv::CC_STAT_HEIGHT), 1);
|
|
EXPECT_EQ(stats(5, cv::CC_STAT_AREA), 1);
|
|
|
|
EXPECT_EQ(stats(6, cv::CC_STAT_LEFT), 12);
|
|
EXPECT_EQ(stats(6, cv::CC_STAT_TOP), 9);
|
|
EXPECT_EQ(stats(6, cv::CC_STAT_WIDTH), 1);
|
|
EXPECT_EQ(stats(6, cv::CC_STAT_HEIGHT), 1);
|
|
EXPECT_EQ(stats(6, cv::CC_STAT_AREA), 1);
|
|
|
|
// Labels' order could be different!
|
|
if (cclt == cv::CCL_WU || cclt == cv::CCL_SAUF) {
|
|
// CCL_SAUF, CCL_WU
|
|
EXPECT_EQ(stats(9, cv::CC_STAT_LEFT), 1);
|
|
EXPECT_EQ(stats(9, cv::CC_STAT_TOP), 11);
|
|
EXPECT_EQ(stats(9, cv::CC_STAT_WIDTH), 4);
|
|
EXPECT_EQ(stats(9, cv::CC_STAT_HEIGHT), 2);
|
|
EXPECT_EQ(stats(9, cv::CC_STAT_AREA), 8);
|
|
|
|
EXPECT_EQ(stats(7, cv::CC_STAT_LEFT), 6);
|
|
EXPECT_EQ(stats(7, cv::CC_STAT_TOP), 10);
|
|
EXPECT_EQ(stats(7, cv::CC_STAT_WIDTH), 4);
|
|
EXPECT_EQ(stats(7, cv::CC_STAT_HEIGHT), 2);
|
|
EXPECT_EQ(stats(7, cv::CC_STAT_AREA), 8);
|
|
|
|
EXPECT_EQ(stats(8, cv::CC_STAT_LEFT), 0);
|
|
EXPECT_EQ(stats(8, cv::CC_STAT_TOP), 10);
|
|
EXPECT_EQ(stats(8, cv::CC_STAT_WIDTH), 16);
|
|
EXPECT_EQ(stats(8, cv::CC_STAT_HEIGHT), 6);
|
|
EXPECT_EQ(stats(8, cv::CC_STAT_AREA), 21);
|
|
}
|
|
else {
|
|
// CCL_BBDT, CCL_GRANA, CCL_SPAGHETTI, CCL_BOLELLI
|
|
EXPECT_EQ(stats(7, cv::CC_STAT_LEFT), 1);
|
|
EXPECT_EQ(stats(7, cv::CC_STAT_TOP), 11);
|
|
EXPECT_EQ(stats(7, cv::CC_STAT_WIDTH), 4);
|
|
EXPECT_EQ(stats(7, cv::CC_STAT_HEIGHT), 2);
|
|
EXPECT_EQ(stats(7, cv::CC_STAT_AREA), 8);
|
|
|
|
EXPECT_EQ(stats(8, cv::CC_STAT_LEFT), 6);
|
|
EXPECT_EQ(stats(8, cv::CC_STAT_TOP), 10);
|
|
EXPECT_EQ(stats(8, cv::CC_STAT_WIDTH), 4);
|
|
EXPECT_EQ(stats(8, cv::CC_STAT_HEIGHT), 2);
|
|
EXPECT_EQ(stats(8, cv::CC_STAT_AREA), 8);
|
|
|
|
EXPECT_EQ(stats(9, cv::CC_STAT_LEFT), 0);
|
|
EXPECT_EQ(stats(9, cv::CC_STAT_TOP), 10);
|
|
EXPECT_EQ(stats(9, cv::CC_STAT_WIDTH), 16);
|
|
EXPECT_EQ(stats(9, cv::CC_STAT_HEIGHT), 6);
|
|
EXPECT_EQ(stats(9, cv::CC_STAT_AREA), 21);
|
|
}
|
|
EXPECT_EQ(stats(10, cv::CC_STAT_LEFT), 9);
|
|
EXPECT_EQ(stats(10, cv::CC_STAT_TOP), 12);
|
|
EXPECT_EQ(stats(10, cv::CC_STAT_WIDTH), 5);
|
|
EXPECT_EQ(stats(10, cv::CC_STAT_HEIGHT), 2);
|
|
EXPECT_EQ(stats(10, cv::CC_STAT_AREA), 7);
|
|
}
|
|
}
|
|
|
|
TEST(Imgproc_ConnectedComponents, chessboard_even)
|
|
{
|
|
cv::Size size(16, 16);
|
|
cv::Mat1b input(size);
|
|
cv::Mat1i output_8c(size);
|
|
cv::Mat1i output_4c(size);
|
|
|
|
// Chessboard image with even number of rows and cols
|
|
// Note that this is the maximum number of labels for 4-way connectivity
|
|
{
|
|
input <<
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1;
|
|
|
|
output_8c <<
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1;
|
|
|
|
output_4c <<
|
|
1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0,
|
|
0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 0, 16,
|
|
17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0, 24, 0,
|
|
0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0, 32,
|
|
33, 0, 34, 0, 35, 0, 36, 0, 37, 0, 38, 0, 39, 0, 40, 0,
|
|
0, 41, 0, 42, 0, 43, 0, 44, 0, 45, 0, 46, 0, 47, 0, 48,
|
|
49, 0, 50, 0, 51, 0, 52, 0, 53, 0, 54, 0, 55, 0, 56, 0,
|
|
0, 57, 0, 58, 0, 59, 0, 60, 0, 61, 0, 62, 0, 63, 0, 64,
|
|
65, 0, 66, 0, 67, 0, 68, 0, 69, 0, 70, 0, 71, 0, 72, 0,
|
|
0, 73, 0, 74, 0, 75, 0, 76, 0, 77, 0, 78, 0, 79, 0, 80,
|
|
81, 0, 82, 0, 83, 0, 84, 0, 85, 0, 86, 0, 87, 0, 88, 0,
|
|
0, 89, 0, 90, 0, 91, 0, 92, 0, 93, 0, 94, 0, 95, 0, 96,
|
|
97, 0, 98, 0, 99, 0, 100, 0, 101, 0, 102, 0, 103, 0, 104, 0,
|
|
0, 105, 0, 106, 0, 107, 0, 108, 0, 109, 0, 110, 0, 111, 0, 112,
|
|
113, 0, 114, 0, 115, 0, 116, 0, 117, 0, 118, 0, 119, 0, 120, 0,
|
|
0, 121, 0, 122, 0, 123, 0, 124, 0, 125, 0, 126, 0, 127, 0, 128;
|
|
}
|
|
|
|
int ccltype[] = { cv::CCL_DEFAULT, cv::CCL_WU, cv::CCL_GRANA, cv::CCL_BOLELLI, cv::CCL_SAUF, cv::CCL_BBDT, cv::CCL_SPAGHETTI };
|
|
|
|
cv::Mat1i labels;
|
|
cv::Mat diff;
|
|
int nLabels = 0;
|
|
for (size_t cclt = 0; cclt < sizeof(ccltype) / sizeof(int); ++cclt) {
|
|
|
|
EXPECT_NO_THROW(nLabels = cv::connectedComponents(input, labels, 8, CV_32S, ccltype[cclt]));
|
|
normalizeLabels(labels, nLabels);
|
|
|
|
diff = labels != output_8c;
|
|
EXPECT_EQ(cv::countNonZero(diff), 0);
|
|
|
|
|
|
EXPECT_NO_THROW(nLabels = cv::connectedComponents(input, labels, 4, CV_32S, ccltype[cclt]));
|
|
normalizeLabels(labels, nLabels);
|
|
|
|
diff = labels != output_4c;
|
|
EXPECT_EQ(cv::countNonZero(diff), 0);
|
|
}
|
|
|
|
}
|
|
|
|
TEST(Imgproc_ConnectedComponents, chessboard_odd)
|
|
{
|
|
cv::Size size(15, 15);
|
|
cv::Mat1b input(size);
|
|
cv::Mat1i output_8c(size);
|
|
cv::Mat1i output_4c(size);
|
|
|
|
// Chessboard image with odd number of rows and cols
|
|
// Note that this is the maximum number of labels for 4-way connectivity
|
|
{
|
|
input <<
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1;
|
|
|
|
output_8c <<
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1;
|
|
|
|
output_4c <<
|
|
1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8,
|
|
0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 0,
|
|
16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23,
|
|
0, 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0,
|
|
31, 0, 32, 0, 33, 0, 34, 0, 35, 0, 36, 0, 37, 0, 38,
|
|
0, 39, 0, 40, 0, 41, 0, 42, 0, 43, 0, 44, 0, 45, 0,
|
|
46, 0, 47, 0, 48, 0, 49, 0, 50, 0, 51, 0, 52, 0, 53,
|
|
0, 54, 0, 55, 0, 56, 0, 57, 0, 58, 0, 59, 0, 60, 0,
|
|
61, 0, 62, 0, 63, 0, 64, 0, 65, 0, 66, 0, 67, 0, 68,
|
|
0, 69, 0, 70, 0, 71, 0, 72, 0, 73, 0, 74, 0, 75, 0,
|
|
76, 0, 77, 0, 78, 0, 79, 0, 80, 0, 81, 0, 82, 0, 83,
|
|
0, 84, 0, 85, 0, 86, 0, 87, 0, 88, 0, 89, 0, 90, 0,
|
|
91, 0, 92, 0, 93, 0, 94, 0, 95, 0, 96, 0, 97, 0, 98,
|
|
0, 99, 0, 100, 0, 101, 0, 102, 0, 103, 0, 104, 0, 105, 0,
|
|
106, 0, 107, 0, 108, 0, 109, 0, 110, 0, 111, 0, 112, 0, 113;
|
|
}
|
|
|
|
int ccltype[] = { cv::CCL_DEFAULT, cv::CCL_WU, cv::CCL_GRANA, cv::CCL_BOLELLI, cv::CCL_SAUF, cv::CCL_BBDT, cv::CCL_SPAGHETTI };
|
|
|
|
cv::Mat1i labels;
|
|
cv::Mat diff;
|
|
int nLabels = 0;
|
|
for (size_t cclt = 0; cclt < sizeof(ccltype) / sizeof(int); ++cclt) {
|
|
|
|
EXPECT_NO_THROW(nLabels = cv::connectedComponents(input, labels, 8, CV_32S, ccltype[cclt]));
|
|
normalizeLabels(labels, nLabels);
|
|
|
|
diff = labels != output_8c;
|
|
EXPECT_EQ(cv::countNonZero(diff), 0);
|
|
|
|
|
|
EXPECT_NO_THROW(nLabels = cv::connectedComponents(input, labels, 4, CV_32S, ccltype[cclt]));
|
|
normalizeLabels(labels, nLabels);
|
|
|
|
diff = labels != output_4c;
|
|
EXPECT_EQ(cv::countNonZero(diff), 0);
|
|
}
|
|
|
|
}
|
|
|
|
TEST(Imgproc_ConnectedComponents, maxlabels_8conn_even)
|
|
{
|
|
cv::Size size(16, 16);
|
|
cv::Mat1b input(size);
|
|
cv::Mat1i output_8c(size);
|
|
cv::Mat1i output_4c(size);
|
|
|
|
{
|
|
input <<
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
|
|
|
|
output_8c <<
|
|
1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 0, 16, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0, 24, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0, 32, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
33, 0, 34, 0, 35, 0, 36, 0, 37, 0, 38, 0, 39, 0, 40, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
41, 0, 42, 0, 43, 0, 44, 0, 45, 0, 46, 0, 47, 0, 48, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
49, 0, 50, 0, 51, 0, 52, 0, 53, 0, 54, 0, 55, 0, 56, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
57, 0, 58, 0, 59, 0, 60, 0, 61, 0, 62, 0, 63, 0, 64, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
|
|
|
|
output_4c <<
|
|
1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 0, 16, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0, 24, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0, 32, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
33, 0, 34, 0, 35, 0, 36, 0, 37, 0, 38, 0, 39, 0, 40, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
41, 0, 42, 0, 43, 0, 44, 0, 45, 0, 46, 0, 47, 0, 48, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
49, 0, 50, 0, 51, 0, 52, 0, 53, 0, 54, 0, 55, 0, 56, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
57, 0, 58, 0, 59, 0, 60, 0, 61, 0, 62, 0, 63, 0, 64, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
|
|
}
|
|
|
|
int ccltype[] = { cv::CCL_DEFAULT, cv::CCL_WU, cv::CCL_GRANA, cv::CCL_BOLELLI, cv::CCL_SAUF, cv::CCL_BBDT, cv::CCL_SPAGHETTI };
|
|
|
|
cv::Mat1i labels;
|
|
cv::Mat diff;
|
|
int nLabels = 0;
|
|
for (size_t cclt = 0; cclt < sizeof(ccltype) / sizeof(int); ++cclt) {
|
|
|
|
EXPECT_NO_THROW(nLabels = cv::connectedComponents(input, labels, 8, CV_32S, ccltype[cclt]));
|
|
normalizeLabels(labels, nLabels);
|
|
|
|
diff = labels != output_8c;
|
|
EXPECT_EQ(cv::countNonZero(diff), 0);
|
|
|
|
|
|
EXPECT_NO_THROW(nLabels = cv::connectedComponents(input, labels, 4, CV_32S, ccltype[cclt]));
|
|
normalizeLabels(labels, nLabels);
|
|
|
|
diff = labels != output_4c;
|
|
EXPECT_EQ(cv::countNonZero(diff), 0);
|
|
}
|
|
|
|
}
|
|
|
|
TEST(Imgproc_ConnectedComponents, maxlabels_8conn_odd)
|
|
{
|
|
cv::Size size(15, 15);
|
|
cv::Mat1b input(size);
|
|
cv::Mat1i output_8c(size);
|
|
cv::Mat1i output_4c(size);
|
|
|
|
{
|
|
input <<
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1;
|
|
|
|
output_8c <<
|
|
1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 0, 16,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0, 24,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0, 32,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
33, 0, 34, 0, 35, 0, 36, 0, 37, 0, 38, 0, 39, 0, 40,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
41, 0, 42, 0, 43, 0, 44, 0, 45, 0, 46, 0, 47, 0, 48,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
49, 0, 50, 0, 51, 0, 52, 0, 53, 0, 54, 0, 55, 0, 56,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
57, 0, 58, 0, 59, 0, 60, 0, 61, 0, 62, 0, 63, 0, 64;
|
|
|
|
output_4c <<
|
|
1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 0, 16,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0, 24,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0, 32,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
33, 0, 34, 0, 35, 0, 36, 0, 37, 0, 38, 0, 39, 0, 40,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
41, 0, 42, 0, 43, 0, 44, 0, 45, 0, 46, 0, 47, 0, 48,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
49, 0, 50, 0, 51, 0, 52, 0, 53, 0, 54, 0, 55, 0, 56,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
57, 0, 58, 0, 59, 0, 60, 0, 61, 0, 62, 0, 63, 0, 64;
|
|
}
|
|
|
|
int ccltype[] = { cv::CCL_DEFAULT, cv::CCL_WU, cv::CCL_GRANA, cv::CCL_BOLELLI, cv::CCL_SAUF, cv::CCL_BBDT, cv::CCL_SPAGHETTI };
|
|
|
|
cv::Mat1i labels;
|
|
cv::Mat diff;
|
|
int nLabels = 0;
|
|
for (size_t cclt = 0; cclt < sizeof(ccltype) / sizeof(int); ++cclt) {
|
|
|
|
EXPECT_NO_THROW(nLabels = cv::connectedComponents(input, labels, 8, CV_32S, ccltype[cclt]));
|
|
normalizeLabels(labels, nLabels);
|
|
|
|
diff = labels != output_8c;
|
|
EXPECT_EQ(cv::countNonZero(diff), 0);
|
|
|
|
|
|
EXPECT_NO_THROW(nLabels = cv::connectedComponents(input, labels, 4, CV_32S, ccltype[cclt]));
|
|
normalizeLabels(labels, nLabels);
|
|
|
|
diff = labels != output_4c;
|
|
EXPECT_EQ(cv::countNonZero(diff), 0);
|
|
}
|
|
|
|
}
|
|
|
|
TEST(Imgproc_ConnectedComponents, single_row)
|
|
{
|
|
cv::Size size(1, 15);
|
|
cv::Mat1b input(size);
|
|
cv::Mat1i output_8c(size);
|
|
cv::Mat1i output_4c(size);
|
|
|
|
{
|
|
input <<
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1;
|
|
|
|
|
|
output_8c <<
|
|
1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8;
|
|
|
|
|
|
output_4c <<
|
|
1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8;
|
|
|
|
}
|
|
|
|
int ccltype[] = { cv::CCL_DEFAULT, cv::CCL_WU, cv::CCL_GRANA, cv::CCL_BOLELLI, cv::CCL_SAUF, cv::CCL_BBDT, cv::CCL_SPAGHETTI };
|
|
|
|
cv::Mat1i labels;
|
|
cv::Mat diff;
|
|
int nLabels = 0;
|
|
for (size_t cclt = 0; cclt < sizeof(ccltype) / sizeof(int); ++cclt) {
|
|
|
|
EXPECT_NO_THROW(nLabels = cv::connectedComponents(input, labels, 8, CV_32S, ccltype[cclt]));
|
|
normalizeLabels(labels, nLabels);
|
|
|
|
diff = labels != output_8c;
|
|
EXPECT_EQ(cv::countNonZero(diff), 0);
|
|
|
|
|
|
EXPECT_NO_THROW(nLabels = cv::connectedComponents(input, labels, 4, CV_32S, ccltype[cclt]));
|
|
normalizeLabels(labels, nLabels);
|
|
|
|
diff = labels != output_4c;
|
|
EXPECT_EQ(cv::countNonZero(diff), 0);
|
|
}
|
|
|
|
}
|
|
|
|
TEST(Imgproc_ConnectedComponents, single_column)
|
|
{
|
|
cv::Size size(15, 1);
|
|
cv::Mat1b input(size);
|
|
cv::Mat1i output_8c(size);
|
|
cv::Mat1i output_4c(size);
|
|
|
|
{
|
|
input <<
|
|
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1;
|
|
|
|
|
|
output_8c <<
|
|
1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8;
|
|
|
|
|
|
output_4c <<
|
|
1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8;
|
|
|
|
}
|
|
|
|
int ccltype[] = { cv::CCL_DEFAULT, cv::CCL_WU, cv::CCL_GRANA, cv::CCL_BOLELLI, cv::CCL_SAUF, cv::CCL_BBDT, cv::CCL_SPAGHETTI };
|
|
|
|
cv::Mat1i labels;
|
|
cv::Mat diff;
|
|
int nLabels = 0;
|
|
for (size_t cclt = 0; cclt < sizeof(ccltype) / sizeof(int); ++cclt) {
|
|
|
|
EXPECT_NO_THROW(nLabels = cv::connectedComponents(input, labels, 8, CV_32S, ccltype[cclt]));
|
|
normalizeLabels(labels, nLabels);
|
|
|
|
diff = labels != output_8c;
|
|
EXPECT_EQ(cv::countNonZero(diff), 0);
|
|
|
|
|
|
EXPECT_NO_THROW(nLabels = cv::connectedComponents(input, labels, 4, CV_32S, ccltype[cclt]));
|
|
normalizeLabels(labels, nLabels);
|
|
|
|
diff = labels != output_4c;
|
|
EXPECT_EQ(cv::countNonZero(diff), 0);
|
|
}
|
|
|
|
}
|
|
|
|
|
|
TEST(Imgproc_ConnectedComponents, 4conn_regression_21366)
|
|
{
|
|
Mat src = Mat::zeros(Size(10, 10), CV_8UC1);
|
|
{
|
|
Mat labels, stats, centroids;
|
|
EXPECT_NO_THROW(cv::connectedComponentsWithStats(src, labels, stats, centroids, 4));
|
|
}
|
|
}
|
|
|
|
|
|
|
|
}
|
|
} // namespace
|