mirror of
https://github.com/opencv/opencv.git
synced 2024-12-02 16:00:17 +08:00
453 lines
12 KiB
OpenEdge ABL
453 lines
12 KiB
OpenEdge ABL
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
// 2008-04-07, Xavier Delacour <xavier.delacour@gmail.com>
|
|
|
|
|
|
// The trouble here is that Octave arrays are in Fortran order, while OpenCV
|
|
// arrays are in C order. Neither Octave nor OpenCV seem to provide n-dim
|
|
// transpose, so we do that here.
|
|
|
|
// For images, we also scale the result to lie within [0-1].
|
|
|
|
|
|
// * add support for sparse matrices
|
|
|
|
// * add support for complex matrices
|
|
|
|
// * add support for roi and coi, or complain if either is set
|
|
|
|
// * test case for channel==1
|
|
// * test case for channel=={2,3,4}
|
|
// * test case for 2 dim, 1 dim, n dim cases
|
|
|
|
%{
|
|
|
|
class ndim_iterator {
|
|
int nd;
|
|
int dims[CV_MAX_DIM];
|
|
int step[CV_MAX_DIM];
|
|
int curr[CV_MAX_DIM];
|
|
uchar* _data;
|
|
int _type;
|
|
bool done;
|
|
public:
|
|
ndim_iterator() {}
|
|
ndim_iterator(CvMat* m) {
|
|
int c = CV_MAT_CN(m->type);
|
|
int elem_size = CV_ELEM_SIZE1(m->type);
|
|
nd = c == 1 ? 2 : 3;
|
|
dims[0] = m->rows;
|
|
dims[1] = m->cols;
|
|
dims[2] = c;
|
|
step[0] = m->step;
|
|
step[1] = c * elem_size;
|
|
step[2] = elem_size;
|
|
curr[0] = curr[1] = curr[2] = 0;
|
|
_data = m->data.ptr;
|
|
_type = m->type;
|
|
done = false;
|
|
}
|
|
ndim_iterator(CvMatND* m) {
|
|
int c = CV_MAT_CN(m->type);
|
|
int elem_size = CV_ELEM_SIZE1(m->type);
|
|
nd = m->dims + (c == 1 ? 0 : 1);
|
|
for (int j = 0; j < m->dims; ++j) {
|
|
dims[j] = m->dim[j].size;
|
|
step[j] = m->dim[j].step;
|
|
curr[j] = 0;
|
|
}
|
|
if (c > 1) {
|
|
dims[m->dims] = c;
|
|
step[m->dims] = elem_size;
|
|
curr[m->dims] = 0;
|
|
}
|
|
_data = m->data.ptr;
|
|
_type = m->type;
|
|
done = false;
|
|
}
|
|
ndim_iterator(IplImage* img) {
|
|
nd = img->nChannels == 1 ? 2 : 3;
|
|
dims[0] = img->height;
|
|
dims[1] = img->width;
|
|
dims[2] = img->nChannels;
|
|
|
|
switch (img->depth) {
|
|
case IPL_DEPTH_8U: _type = CV_8U; break;
|
|
case IPL_DEPTH_8S: _type = CV_8S; break;
|
|
case IPL_DEPTH_16U: _type = CV_16U; break;
|
|
case IPL_DEPTH_16S: _type = CV_16S; break;
|
|
case IPL_DEPTH_32S: _type = CV_32S; break;
|
|
case IPL_DEPTH_32F: _type = CV_32F; break;
|
|
case IPL_DEPTH_1U: _type = CV_64F; break;
|
|
default:
|
|
error("unsupported image depth");
|
|
return;
|
|
}
|
|
|
|
int elem_size = CV_ELEM_SIZE1(_type);
|
|
step[0] = img->widthStep;
|
|
step[1] = img->nChannels * elem_size;
|
|
step[2] = elem_size;
|
|
curr[0] = curr[1] = curr[2] = 0;
|
|
_data = (uchar*)img->imageData;
|
|
done = false;
|
|
}
|
|
ndim_iterator(NDArray& nda) {
|
|
dim_vector d(nda.dims());
|
|
nd = d.length();
|
|
int last_step = sizeof(double);
|
|
for (int j = 0; j < d.length(); ++j) {
|
|
dims[j] = d(j);
|
|
step[j] = last_step;
|
|
last_step *= dims[j];
|
|
curr[j] = 0;
|
|
}
|
|
_data = (uchar*)const_cast<double*>(nda.data());
|
|
_type = CV_64F;
|
|
done = false;
|
|
}
|
|
|
|
operator bool () const {
|
|
return !done;
|
|
}
|
|
uchar* data() {
|
|
return _data;
|
|
}
|
|
int type() const {
|
|
return _type;
|
|
}
|
|
ndim_iterator& operator++ () {
|
|
int curr_dim = 0;
|
|
for (;;) {
|
|
_data += step[curr_dim];
|
|
if (++curr[curr_dim] < dims[curr_dim])
|
|
break;
|
|
curr[curr_dim] = 0;
|
|
_data -= step[curr_dim] * dims[curr_dim];
|
|
++curr_dim;
|
|
if (curr_dim == nd) {
|
|
done = true;
|
|
break;
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
};
|
|
|
|
template <class T1, class T2>
|
|
void transpose_copy_typed(ndim_iterator src_it, ndim_iterator dst_it,
|
|
double scale) {
|
|
assert(sizeof(T1) == CV_ELEM_SIZE1(src_it.type()));
|
|
assert(sizeof(T2) == CV_ELEM_SIZE1(dst_it.type()));
|
|
if (scale == 1) {
|
|
while (src_it) {
|
|
*(T2*)dst_it.data() = (T2)*(T1*)src_it.data();
|
|
++src_it;
|
|
++dst_it;
|
|
}
|
|
} else {
|
|
while (src_it) {
|
|
*(T2*)dst_it.data() = (T2)(scale * (*(T1*)src_it.data()));
|
|
++src_it;
|
|
++dst_it;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class T1>
|
|
void transpose_copy2(ndim_iterator src_it, ndim_iterator dst_it,
|
|
double scale) {
|
|
switch (CV_MAT_DEPTH(dst_it.type())) {
|
|
case CV_8U: transpose_copy_typed<T1,unsigned char>(src_it,dst_it,scale); break;
|
|
case CV_8S: transpose_copy_typed<T1,signed char>(src_it,dst_it,scale); break;
|
|
case CV_16U: transpose_copy_typed<T1,unsigned short>(src_it,dst_it,scale); break;
|
|
case CV_16S: transpose_copy_typed<T1,signed short>(src_it,dst_it,scale); break;
|
|
case CV_32S: transpose_copy_typed<T1,signed int>(src_it,dst_it,scale); break;
|
|
case CV_32F: transpose_copy_typed<T1,float>(src_it,dst_it,scale); break;
|
|
case CV_64F: transpose_copy_typed<T1,double>(src_it,dst_it,scale); break;
|
|
default:
|
|
error("unsupported dest array type (supported types are CV_8U, CV_8S, "
|
|
"CV_16U, CV_16S, CV_32S, CV_32F, CV_64F)");
|
|
}
|
|
}
|
|
|
|
void transpose_copy(ndim_iterator src_it, ndim_iterator dst_it,
|
|
double scale = 1) {
|
|
switch (CV_MAT_DEPTH(src_it.type())) {
|
|
case CV_8U: transpose_copy2<unsigned char>(src_it,dst_it,scale); break;
|
|
case CV_8S: transpose_copy2<signed char>(src_it,dst_it,scale); break;
|
|
case CV_16U: transpose_copy2<unsigned short>(src_it,dst_it,scale); break;
|
|
case CV_16S: transpose_copy2<signed short>(src_it,dst_it,scale); break;
|
|
case CV_32S: transpose_copy2<signed int>(src_it,dst_it,scale); break;
|
|
case CV_32F: transpose_copy2<float>(src_it,dst_it,scale); break;
|
|
case CV_64F: transpose_copy2<double>(src_it,dst_it,scale); break;
|
|
default:
|
|
error("unsupported source array type (supported types are CV_8U, CV_8S, "
|
|
"CV_16U, CV_16S, CV_32S, CV_32F, CV_64F)");
|
|
}
|
|
}
|
|
|
|
octave_value cv2mat(CvArr* arr) {
|
|
dim_vector d;
|
|
NDArray nda;
|
|
|
|
if (CV_IS_MAT(arr)) {
|
|
// m x n x c
|
|
CvMat* m = (CvMat*)arr;
|
|
|
|
int c = CV_MAT_CN(m->type);
|
|
if (c == 1) {
|
|
d.resize(2);
|
|
d(0) = m->rows;
|
|
d(1) = m->cols;
|
|
} else {
|
|
d.resize(3);
|
|
d(0) = m->rows;
|
|
d(1) = m->cols;
|
|
d(2) = c;
|
|
}
|
|
|
|
nda = NDArray(d);
|
|
transpose_copy(m, nda);
|
|
}
|
|
else if (CV_IS_MATND(arr)) {
|
|
// m1 x m2 x ... x mn x c
|
|
CvMatND* m = (CvMatND*)arr;
|
|
|
|
int c = CV_MAT_CN(m->type);
|
|
if (c == 1) {
|
|
d.resize(m->dims);
|
|
for (int j = 0; j < m->dims; ++j)
|
|
d(j) = m->dim[j].size;
|
|
} else {
|
|
d.resize(m->dims + 1);
|
|
for (int j = 0; j < m->dims; ++j)
|
|
d(j) = m->dim[j].size;
|
|
d(m->dims) = c;
|
|
}
|
|
|
|
nda = NDArray(d);
|
|
transpose_copy(m, nda);
|
|
}
|
|
else if (CV_IS_IMAGE(arr)) {
|
|
// m x n x c
|
|
IplImage* img = (IplImage*)arr;
|
|
|
|
if (img->nChannels == 1) {
|
|
d.resize(2);
|
|
d(0) = img->height;
|
|
d(1) = img->width;
|
|
} else {
|
|
d.resize(3);
|
|
d(0) = img->height;
|
|
d(1) = img->width;
|
|
d(2) = img->nChannels;
|
|
}
|
|
|
|
nda = NDArray(d);
|
|
transpose_copy(img, nda);
|
|
}
|
|
else {
|
|
error("unsupported array type (supported types are CvMat, CvMatND, IplImage)");
|
|
return octave_value();
|
|
}
|
|
|
|
return nda;
|
|
}
|
|
|
|
octave_value mat2cv(const octave_value& ov, int type) {
|
|
NDArray nda(ov.array_value());
|
|
if (error_state)
|
|
return 0;
|
|
|
|
dim_vector d = ov.dims();
|
|
assert(d.length() > 0);
|
|
|
|
int nd = d.length();
|
|
int last_dim = d(d.length() - 1);
|
|
int c = CV_MAT_CN(type);
|
|
if (c != 1 && c != last_dim) {
|
|
error("last dimension and channel must agree, or channel must equal one");
|
|
return 0;
|
|
}
|
|
if (c > 1)
|
|
--nd;
|
|
|
|
if (nd == 2) {
|
|
CvMat *m = cvCreateMat(d(0), d(1), type);
|
|
transpose_copy(nda, m);
|
|
return SWIG_NewPointerObj(m, SWIGTYPE_p_CvMat, SWIG_POINTER_OWN);
|
|
}
|
|
else {
|
|
int tmp[CV_MAX_DIM];
|
|
for (int j = 0; j < nd; ++j)
|
|
tmp[j] = d(j);
|
|
CvMatND *m = cvCreateMatND(nd, tmp, type);
|
|
transpose_copy(nda, m);
|
|
return SWIG_NewPointerObj(m, SWIGTYPE_p_CvMatND, SWIG_POINTER_OWN);
|
|
}
|
|
}
|
|
|
|
octave_value cv2im(CvArr* arr) {
|
|
if (!CV_IS_IMAGE(arr) && !CV_IS_MAT(arr)) {
|
|
error("input is not an OpenCV image or 2D matrix");
|
|
return octave_value();
|
|
}
|
|
|
|
dim_vector d;
|
|
NDArray nda;
|
|
|
|
if (CV_IS_MAT(arr)) {
|
|
// m x n x c
|
|
CvMat* m = (CvMat*)arr;
|
|
|
|
int c = CV_MAT_CN(m->type);
|
|
if (c == 1) {
|
|
d.resize(2);
|
|
d(0) = m->rows;
|
|
d(1) = m->cols;
|
|
} else {
|
|
d.resize(3);
|
|
d(0) = m->rows;
|
|
d(1) = m->cols;
|
|
d(2) = c;
|
|
}
|
|
|
|
nda = NDArray(d);
|
|
transpose_copy(m, nda, 1/256.0);
|
|
}
|
|
else if (CV_IS_IMAGE(arr)) {
|
|
// m x n x c
|
|
IplImage* img = (IplImage*)arr;
|
|
|
|
if (img->nChannels == 1) {
|
|
d.resize(2);
|
|
d(0) = img->height;
|
|
d(1) = img->width;
|
|
} else {
|
|
d.resize(3);
|
|
d(0) = img->height;
|
|
d(1) = img->width;
|
|
d(2) = img->nChannels;
|
|
}
|
|
|
|
nda = NDArray(d);
|
|
transpose_copy(img, nda, 1/256.0);
|
|
}
|
|
|
|
return nda;
|
|
}
|
|
|
|
CvMat* im2cv(const octave_value& ov, int depth) {
|
|
NDArray nda(ov.array_value());
|
|
if (error_state)
|
|
return 0;
|
|
|
|
dim_vector d = ov.dims();
|
|
assert(d.length() > 0);
|
|
|
|
if (d.length() != 2 && d.length() != 3 &&
|
|
!(d.length() == 3 && d(2) <= 4)) {
|
|
error("input must be m x n or m x n x c matrix, where 1<=c<=4");
|
|
return 0;
|
|
}
|
|
|
|
int channels = d.length() == 2 ? 1 : d(2);
|
|
int type = CV_MAKETYPE(depth, channels);
|
|
|
|
CvMat *m = cvCreateMat(d(0), d(1), type);
|
|
transpose_copy(nda, m, 256);
|
|
|
|
return m;
|
|
}
|
|
|
|
%}
|
|
|
|
%newobject im2cv;
|
|
|
|
%feature("autodoc", 0) cv2mat;
|
|
%feature("autodoc", 0) mat2cv;
|
|
%feature("autodoc", 0) cv2im;
|
|
%feature("autodoc", 0) im2cv;
|
|
|
|
%docstring cv2mat {
|
|
@deftypefn {Loadable Function} @var{m1} = cv2mat (@var{m2})
|
|
Convert the CvMat, CvMatND, or IplImage @var{m2} into an Octave real matrix @var{m1}.
|
|
The dimensions @var{m1} are those of @var{m2}, plus an addition dimension
|
|
if @var{m2} has more than one channel.
|
|
@end deftypefn
|
|
}
|
|
|
|
%docstring mat2cv {
|
|
@deftypefn {Loadable Function} @var{m1} = mat2cv (@var{m2}, @var{type})
|
|
Convert the Octave array @var{m2} into either a CvMat or a CvMatND of type
|
|
@var{type}.
|
|
@var{type} is one of CV_8UC(n), CV_8SC(n), CV_16UC(n), CV_16SC(n), CV_32SC(n),
|
|
CV_32FC(n), CV_64FC(n), where n indicates channel and is between 1 and 4.
|
|
If the dimension of @var{m2} is equal to 2 (not counting channels),
|
|
a CvMat is returned. Otherwise, a CvMatND is returned.
|
|
@end deftypefn
|
|
}
|
|
|
|
%docstring cv2im {
|
|
@deftypefn {Loadable Function} @var{im} = cv2im (@var{I})
|
|
Convert the OpenCV image or 2D matrix @var{I} into an Octave image @var{im}.
|
|
@var{im} is a real matrix of dimension height x width or
|
|
height x width x channels, with values within the interval [0,1]).
|
|
@end deftypefn
|
|
}
|
|
|
|
%docstring im2cv {
|
|
@deftypefn {Loadable Function} @var{I} = im2cv (@var{im}, @var{depth})
|
|
Convert the Octave image @var{im} into the OpenCV image @var{I} of depth
|
|
@var{depth}.
|
|
@var{im} is a real matrix of dimension height x width or
|
|
height x width x channels, with values within the interval [0,1].
|
|
@var{depth} must be one of CV_8U, CV_8S, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F.
|
|
@end deftypefn
|
|
}
|
|
|
|
octave_value cv2mat(CvArr* arr);
|
|
octave_value mat2cv(const octave_value& ov, int type);
|
|
octave_value cv2im(CvArr* arr);
|
|
CvMat* im2cv(const octave_value& ov, int depth);
|