opencv/modules/softcascade/src/detector_cuda.cpp
2013-06-10 12:40:31 +04:00

604 lines
21 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#if !defined (HAVE_CUDA)
cv::softcascade::SCascade::SCascade(const double, const double, const int, const int) { throw_no_cuda(); }
cv::softcascade::SCascade::~SCascade() { throw_no_cuda(); }
bool cv::softcascade::SCascade::load(const FileNode&) { throw_no_cuda(); return false;}
void cv::softcascade::SCascade::detect(InputArray, InputArray, OutputArray, cv::gpu::Stream&) const { throw_no_cuda(); }
void cv::softcascade::SCascade::read(const FileNode& fn) { Algorithm::read(fn); }
cv::softcascade::ChannelsProcessor::ChannelsProcessor() { throw_no_cuda(); }
cv::softcascade::ChannelsProcessor::~ChannelsProcessor() { throw_no_cuda(); }
cv::Ptr<cv::softcascade::ChannelsProcessor> cv::softcascade::ChannelsProcessor::create(const int, const int, const int)
{ throw_no_cuda(); return cv::Ptr<cv::softcascade::ChannelsProcessor>(0); }
#else
# include "cuda_invoker.hpp"
cv::softcascade::cudev::Level::Level(int idx, const Octave& oct, const float scale, const int w, const int h)
: octave(idx), step(oct.stages), relScale(scale / oct.scale)
{
workRect.x = (unsigned char)cvRound(w / (float)oct.shrinkage);
workRect.y = (unsigned char)cvRound(h / (float)oct.shrinkage);
objSize.x = cv::saturate_cast<uchar>(oct.size.x * relScale);
objSize.y = cv::saturate_cast<uchar>(oct.size.y * relScale);
// according to R. Benenson, M. Mathias, R. Timofte and L. Van Gool's and Dallal's papers
if (fabs(relScale - 1.f) < FLT_EPSILON)
scaling[0] = scaling[1] = 1.f;
else
{
scaling[0] = (relScale < 1.f) ? 0.89f * ::pow(relScale, 1.099f / ::log(2.0f)) : 1.f;
scaling[1] = relScale * relScale;
}
}
namespace cv { namespace softcascade { namespace cudev {
void fillBins(cv::gpu::PtrStepSzb hogluv, const cv::gpu::PtrStepSzf& nangle,
const int fw, const int fh, const int bins, cudaStream_t stream);
void suppress(const cv::gpu::PtrStepSzb& objects, cv::gpu::PtrStepSzb overlaps, cv::gpu::PtrStepSzi ndetections,
cv::gpu::PtrStepSzb suppressed, cudaStream_t stream);
void bgr2Luv(const cv::gpu::PtrStepSzb& bgr, cv::gpu::PtrStepSzb luv);
void transform(const cv::gpu::PtrStepSz<uchar3>& bgr, cv::gpu::PtrStepSzb gray);
void gray2hog(const cv::gpu::PtrStepSzb& gray, cv::gpu::PtrStepSzb mag, const int bins);
void shrink(const cv::gpu::PtrStepSzb& channels, cv::gpu::PtrStepSzb shrunk);
void shfl_integral(const cv::gpu::PtrStepSzb& img, cv::gpu::PtrStepSz<unsigned int> integral, cudaStream_t stream);
}}}
struct cv::softcascade::SCascade::Fields
{
static Fields* parseCascade(const FileNode &root, const float mins, const float maxs, const int totals, const int method)
{
static const char *const SC_STAGE_TYPE = "stageType";
static const char *const SC_BOOST = "BOOST";
static const char *const SC_FEATURE_TYPE = "featureType";
static const char *const SC_ICF = "ICF";
static const char *const SC_ORIG_W = "width";
static const char *const SC_ORIG_H = "height";
static const char *const SC_FEATURE_FORMAT = "featureFormat";
static const char *const SC_SHRINKAGE = "shrinkage";
static const char *const SC_OCTAVES = "octaves";
static const char *const SC_OCT_SCALE = "scale";
static const char *const SC_OCT_WEAKS = "weaks";
static const char *const SC_TREES = "trees";
static const char *const SC_WEAK_THRESHOLD = "treeThreshold";
static const char *const SC_FEATURES = "features";
static const char *const SC_INTERNAL = "internalNodes";
static const char *const SC_LEAF = "leafValues";
static const char *const SC_F_CHANNEL = "channel";
static const char *const SC_F_RECT = "rect";
// only Ada Boost supported
String stageTypeStr = (String)root[SC_STAGE_TYPE];
CV_Assert(stageTypeStr == SC_BOOST);
// only HOG-like integral channel features supported
String featureTypeStr = (String)root[SC_FEATURE_TYPE];
CV_Assert(featureTypeStr == SC_ICF);
int origWidth = (int)root[SC_ORIG_W];
int origHeight = (int)root[SC_ORIG_H];
String fformat = (String)root[SC_FEATURE_FORMAT];
bool useBoxes = (fformat == "BOX");
ushort shrinkage = cv::saturate_cast<ushort>((int)root[SC_SHRINKAGE]);
FileNode fn = root[SC_OCTAVES];
if (fn.empty()) return 0;
std::vector<cudev::Octave> voctaves;
std::vector<float> vstages;
std::vector<cudev::Node> vnodes;
std::vector<float> vleaves;
FileNodeIterator it = fn.begin(), it_end = fn.end();
for (ushort octIndex = 0; it != it_end; ++it, ++octIndex)
{
FileNode fns = *it;
float scale = powf(2.f,saturate_cast<float>((int)fns[SC_OCT_SCALE]));
bool isUPOctave = scale >= 1;
ushort nweaks = saturate_cast<ushort>((int)fns[SC_OCT_WEAKS]);
ushort2 size;
size.x = (unsigned short)cvRound(origWidth * scale);
size.y = (unsigned short)cvRound(origHeight * scale);
cudev::Octave octave(octIndex, nweaks, shrinkage, size, scale);
CV_Assert(octave.stages > 0);
voctaves.push_back(octave);
FileNode ffs = fns[SC_FEATURES];
if (ffs.empty()) return 0;
std::vector<cv::Rect> feature_rects;
std::vector<int> feature_channels;
FileNodeIterator ftrs = ffs.begin(), ftrs_end = ffs.end();
int feature_offset = 0;
for (; ftrs != ftrs_end; ++ftrs, ++feature_offset )
{
cv::FileNode ftn = (*ftrs)[SC_F_RECT];
cv::FileNodeIterator r_it = ftn.begin();
int x = (int)*(r_it++);
int y = (int)*(r_it++);
int w = (int)*(r_it++);
int h = (int)*(r_it++);
if (useBoxes)
{
if (isUPOctave)
{
w -= x;
h -= y;
}
}
else
{
if (!isUPOctave)
{
w += x;
h += y;
}
}
feature_rects.push_back(cv::Rect(x, y, w, h));
feature_channels.push_back((int)(*ftrs)[SC_F_CHANNEL]);
}
fns = fns[SC_TREES];
if (fn.empty()) return false;
// for each stage (~ decision tree with H = 2)
FileNodeIterator st = fns.begin(), st_end = fns.end();
for (; st != st_end; ++st )
{
FileNode octfn = *st;
float threshold = (float)octfn[SC_WEAK_THRESHOLD];
vstages.push_back(threshold);
FileNode intfns = octfn[SC_INTERNAL];
FileNodeIterator inIt = intfns.begin(), inIt_end = intfns.end();
for (; inIt != inIt_end;)
{
inIt +=2;
int featureIdx = (int)(*(inIt++));
float orig_threshold = (float)(*(inIt++));
unsigned int th = saturate_cast<unsigned int>((int)orig_threshold);
cv::Rect& r = feature_rects[featureIdx];
uchar4 rect;
rect.x = saturate_cast<uchar>(r.x);
rect.y = saturate_cast<uchar>(r.y);
rect.z = saturate_cast<uchar>(r.width);
rect.w = saturate_cast<uchar>(r.height);
unsigned int channel = saturate_cast<unsigned int>(feature_channels[featureIdx]);
vnodes.push_back(cudev::Node(rect, channel, th));
}
intfns = octfn[SC_LEAF];
inIt = intfns.begin(), inIt_end = intfns.end();
for (; inIt != inIt_end; ++inIt)
{
vleaves.push_back((float)(*inIt));
}
}
}
cv::Mat hoctaves(1, (int) (voctaves.size() * sizeof(cudev::Octave)), CV_8UC1, (uchar*)&(voctaves[0]));
CV_Assert(!hoctaves.empty());
cv::Mat hstages(cv::Mat(vstages).reshape(1,1));
CV_Assert(!hstages.empty());
cv::Mat hnodes(1, (int) (vnodes.size() * sizeof(cudev::Node)), CV_8UC1, (uchar*)&(vnodes[0]) );
CV_Assert(!hnodes.empty());
cv::Mat hleaves(cv::Mat(vleaves).reshape(1,1));
CV_Assert(!hleaves.empty());
Fields* fields = new Fields(mins, maxs, totals, origWidth, origHeight, shrinkage, 0,
hoctaves, hstages, hnodes, hleaves, method);
fields->voctaves = voctaves;
fields->createLevels(DEFAULT_FRAME_HEIGHT, DEFAULT_FRAME_WIDTH);
return fields;
}
bool check(float mins,float maxs, int scales)
{
bool updated = ((minScale == mins) || (maxScale == maxs) || (totals == scales));
minScale = mins;
maxScale = maxScale;
totals = scales;
return updated;
}
int createLevels(const int fh, const int fw)
{
std::vector<cudev::Level> vlevels;
float logFactor = (::log(maxScale) - ::log(minScale)) / (totals -1);
float scale = minScale;
int dcs = 0;
for (int sc = 0; sc < totals; ++sc)
{
int width = (int)::std::max(0.0f, fw - (origObjWidth * scale));
int height = (int)::std::max(0.0f, fh - (origObjHeight * scale));
float logScale = ::log(scale);
int fit = fitOctave(voctaves, logScale);
cudev::Level level(fit, voctaves[fit], scale, width, height);
if (!width || !height)
break;
else
{
vlevels.push_back(level);
if (voctaves[fit].scale < 1) ++dcs;
}
if (::fabs(scale - maxScale) < FLT_EPSILON) break;
scale = ::std::min(maxScale, ::expf(::log(scale) + logFactor));
}
cv::Mat hlevels = cv::Mat(1, (int) (vlevels.size() * sizeof(cudev::Level)), CV_8UC1, (uchar*)&(vlevels[0]) );
CV_Assert(!hlevels.empty());
levels.upload(hlevels);
downscales = dcs;
return dcs;
}
bool update(int fh, int fw, int shr)
{
shrunk.create(fh / shr * HOG_LUV_BINS, fw / shr, CV_8UC1);
integralBuffer.create(shrunk.rows, shrunk.cols, CV_32SC1);
hogluv.create((fh / shr) * HOG_LUV_BINS + 1, fw / shr + 1, CV_32SC1);
hogluv.setTo(cv::Scalar::all(0));
overlaps.create(1, 5000, CV_8UC1);
suppressed.create(1, sizeof(Detection) * 51, CV_8UC1);
return true;
}
Fields( const float mins, const float maxs, const int tts, const int ow, const int oh, const int shr, const int ds,
cv::Mat hoctaves, cv::Mat hstages, cv::Mat hnodes, cv::Mat hleaves, int method)
: minScale(mins), maxScale(maxs), totals(tts), origObjWidth(ow), origObjHeight(oh), shrinkage(shr), downscales(ds)
{
update(DEFAULT_FRAME_HEIGHT, DEFAULT_FRAME_WIDTH, shr);
octaves.upload(hoctaves);
stages.upload(hstages);
nodes.upload(hnodes);
leaves.upload(hleaves);
preprocessor = ChannelsProcessor::create(shrinkage, 6, method);
}
void detect(cv::gpu::GpuMat& objects, cv::gpu::Stream& s) const
{
objects.setTo(Scalar::all(0), s);
cudaSafeCall( cudaGetLastError());
cudev::CascadeInvoker<cudev::GK107PolicyX4> invoker
= cudev::CascadeInvoker<cudev::GK107PolicyX4>(levels, stages, nodes, leaves);
cudaStream_t stream = cv::gpu::StreamAccessor::getStream(s);
invoker(mask, hogluv, objects, downscales, stream);
}
void suppress(cv::gpu::GpuMat& objects, cv::gpu::Stream& s)
{
cv::gpu::GpuMat ndetections = cv::gpu::GpuMat(objects, cv::Rect(0, 0, sizeof(Detection), 1));
ensureSizeIsEnough(objects.rows, objects.cols, CV_8UC1, overlaps);
overlaps.setTo(0, s);
suppressed.setTo(0, s);
cudaStream_t stream = cv::gpu::StreamAccessor::getStream(s);
cudev::suppress(objects, overlaps, ndetections, suppressed, stream);
}
private:
typedef std::vector<cudev::Octave>::const_iterator octIt_t;
static int fitOctave(const std::vector<cudev::Octave>& octs, const float& logFactor)
{
float minAbsLog = FLT_MAX;
int res = 0;
for (int oct = 0; oct < (int)octs.size(); ++oct)
{
const cudev::Octave& octave =octs[oct];
float logOctave = ::log(octave.scale);
float logAbsScale = ::fabs(logFactor - logOctave);
if(logAbsScale < minAbsLog)
{
res = oct;
minAbsLog = logAbsScale;
}
}
return res;
}
public:
cv::Ptr<ChannelsProcessor> preprocessor;
// scales range
float minScale;
float maxScale;
int totals;
int origObjWidth;
int origObjHeight;
const int shrinkage;
int downscales;
// 160x120x10
cv::gpu::GpuMat shrunk;
// temporal mat for integral
cv::gpu::GpuMat integralBuffer;
// 161x121x10
cv::gpu::GpuMat hogluv;
// used for suppression
cv::gpu::GpuMat suppressed;
// used for area overlap computing during
cv::gpu::GpuMat overlaps;
// Cascade from xml
cv::gpu::GpuMat octaves;
cv::gpu::GpuMat stages;
cv::gpu::GpuMat nodes;
cv::gpu::GpuMat leaves;
cv::gpu::GpuMat levels;
// For ROI
cv::gpu::GpuMat mask;
cv::gpu::GpuMat genRoiTmp;
// cv::gpu::GpuMat collected;
std::vector<cudev::Octave> voctaves;
// DeviceInfo info;
enum { BOOST = 0 };
enum
{
DEFAULT_FRAME_WIDTH = 640,
DEFAULT_FRAME_HEIGHT = 480,
HOG_LUV_BINS = 10
};
private:
cv::softcascade::SCascade::Fields& operator=( const cv::softcascade::SCascade::Fields & );
};
cv::softcascade::SCascade::SCascade(const double mins, const double maxs, const int sc, const int fl)
: fields(0), minScale(mins), maxScale(maxs), scales(sc), flags(fl) {}
cv::softcascade::SCascade::~SCascade() { delete fields; }
bool cv::softcascade::SCascade::load(const FileNode& fn)
{
if (fields) delete fields;
fields = Fields::parseCascade(fn, (float)minScale, (float)maxScale, scales, flags);
return fields != 0;
}
namespace {
void integral(const cv::gpu::GpuMat& src, cv::gpu::GpuMat& sum, cv::gpu::GpuMat& buffer, cv::gpu::Stream& s)
{
CV_Assert(src.type() == CV_8UC1);
cudaStream_t stream = cv::gpu::StreamAccessor::getStream(s);
cv::Size whole;
cv::Point offset;
src.locateROI(whole, offset);
if (cv::gpu::deviceSupports(cv::gpu::WARP_SHUFFLE_FUNCTIONS) && src.cols <= 2048
&& offset.x % 16 == 0 && ((src.cols + 63) / 64) * 64 <= (static_cast<int>(src.step) - offset.x))
{
ensureSizeIsEnough(((src.rows + 7) / 8) * 8, ((src.cols + 63) / 64) * 64, CV_32SC1, buffer);
cv::softcascade::cudev::shfl_integral(src, buffer, stream);
sum.create(src.rows + 1, src.cols + 1, CV_32SC1);
sum.setTo(cv::Scalar::all(0), s);
cv::gpu::GpuMat inner = sum(cv::Rect(1, 1, src.cols, src.rows));
cv::gpu::GpuMat res = buffer(cv::Rect(0, 0, src.cols, src.rows));
res.copyTo(inner, s);
}
else {CV_Error(cv::Error::GpuNotSupported, ": CC 3.x required.");}
}
}
void cv::softcascade::SCascade::detect(InputArray _image, InputArray _rois, OutputArray _objects, cv::gpu::Stream& s) const
{
CV_Assert(fields);
// only color images and precomputed integrals are supported
int type = _image.type();
CV_Assert(type == CV_8UC3 || type == CV_32SC1 || (!_rois.empty()));
const cv::gpu::GpuMat image = _image.getGpuMat();
if (_objects.empty()) _objects.create(1, 4096 * sizeof(Detection), CV_8UC1);
cv::gpu::GpuMat rois = _rois.getGpuMat(), objects = _objects.getGpuMat();
/// roi
Fields& flds = *fields;
int shr = flds.shrinkage;
flds.mask.create( rois.cols / shr, rois.rows / shr, rois.type());
cudev::shrink(rois, flds.mask);
//cv::gpu::transpose(flds.genRoiTmp, flds.mask, s);
if (type == CV_8UC3)
{
flds.update(image.rows, image.cols, flds.shrinkage);
if (flds.check((float)minScale, (float)maxScale, scales))
flds.createLevels(image.rows, image.cols);
flds.preprocessor->apply(image, flds.shrunk);
::integral(flds.shrunk, flds.hogluv, flds.integralBuffer, s);
}
else
{
image.copyTo(flds.hogluv, s);
}
flds.detect(objects, s);
if ( (flags && NMS_MASK) != NO_REJECT)
{
cv::gpu::GpuMat spr(objects, cv::Rect(0, 0, flds.suppressed.cols, flds.suppressed.rows));
flds.suppress(objects, s);
flds.suppressed.copyTo(spr);
}
}
void cv::softcascade::SCascade::read(const FileNode& fn)
{
Algorithm::read(fn);
}
namespace {
using cv::InputArray;
using cv::OutputArray;
using cv::gpu::Stream;
using cv::gpu::GpuMat;
inline void setZero(cv::gpu::GpuMat& m, cv::gpu::Stream& s)
{
m.setTo(0, s);
}
struct SeparablePreprocessor : public cv::softcascade::ChannelsProcessor
{
SeparablePreprocessor(const int s, const int b) : cv::softcascade::ChannelsProcessor(), shrinkage(s), bins(b) {}
virtual ~SeparablePreprocessor() {}
virtual void apply(InputArray _frame, OutputArray _shrunk, cv::gpu::Stream& s = cv::gpu::Stream::Null())
{
bgr = _frame.getGpuMat();
//cv::gpu::GaussianBlur(frame, bgr, cv::Size(3, 3), -1.0);
_shrunk.create(bgr.rows * (4 + bins) / shrinkage, bgr.cols / shrinkage, CV_8UC1);
cv::gpu::GpuMat shrunk = _shrunk.getGpuMat();
channels.create(bgr.rows * (4 + bins), bgr.cols, CV_8UC1);
setZero(channels, s);
gray.create(bgr.size(), CV_8UC1);
cv::softcascade::cudev::transform(bgr, gray); //cv::gpu::cvtColor(bgr, gray, CV_BGR2GRAY);
cv::softcascade::cudev::gray2hog(gray, channels(cv::Rect(0, 0, bgr.cols, bgr.rows * (bins + 1))), bins);
cv::gpu::GpuMat luv(channels, cv::Rect(0, bgr.rows * (bins + 1), bgr.cols, bgr.rows * 3));
cv::softcascade::cudev::bgr2Luv(bgr, luv);
cv::softcascade::cudev::shrink(channels, shrunk);
}
private:
const int shrinkage;
const int bins;
cv::gpu::GpuMat bgr;
cv::gpu::GpuMat gray;
cv::gpu::GpuMat channels;
SeparablePreprocessor& operator=( const SeparablePreprocessor& );
};
}
cv::Ptr<cv::softcascade::ChannelsProcessor> cv::softcascade::ChannelsProcessor::create(const int s, const int b, const int m)
{
CV_Assert((m && SEPARABLE));
return cv::Ptr<cv::softcascade::ChannelsProcessor>(new SeparablePreprocessor(s, b));
}
cv::softcascade::ChannelsProcessor::ChannelsProcessor() { }
cv::softcascade::ChannelsProcessor::~ChannelsProcessor() { }
#endif