opencv/modules/imgcodecs/src/loadsave.cpp
2018-12-09 15:05:27 +03:00

1055 lines
31 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
//
// Loading and saving IPL images.
//
#include "precomp.hpp"
#include "grfmts.hpp"
#include "utils.hpp"
#include "exif.hpp"
#undef min
#undef max
#include <iostream>
#include <fstream>
#include <opencv2/core/utils/configuration.private.hpp>
/****************************************************************************************\
* Image Codecs *
\****************************************************************************************/
namespace cv {
static const size_t CV_IO_MAX_IMAGE_PARAMS = cv::utils::getConfigurationParameterSizeT("OPENCV_IO_MAX_IMAGE_PARAMS", 50);
static const size_t CV_IO_MAX_IMAGE_WIDTH = utils::getConfigurationParameterSizeT("OPENCV_IO_MAX_IMAGE_WIDTH", 1 << 20);
static const size_t CV_IO_MAX_IMAGE_HEIGHT = utils::getConfigurationParameterSizeT("OPENCV_IO_MAX_IMAGE_HEIGHT", 1 << 20);
static const size_t CV_IO_MAX_IMAGE_PIXELS = utils::getConfigurationParameterSizeT("OPENCV_IO_MAX_IMAGE_PIXELS", 1 << 30);
static Size validateInputImageSize(const Size& size)
{
CV_Assert(size.width > 0);
CV_Assert(static_cast<size_t>(size.width) <= CV_IO_MAX_IMAGE_WIDTH);
CV_Assert(size.height > 0);
CV_Assert(static_cast<size_t>(size.height) <= CV_IO_MAX_IMAGE_HEIGHT);
uint64 pixels = (uint64)size.width * (uint64)size.height;
CV_Assert(pixels <= CV_IO_MAX_IMAGE_PIXELS);
return size;
}
namespace {
class ByteStreamBuffer: public std::streambuf
{
public:
ByteStreamBuffer(char* base, size_t length)
{
setg(base, base, base + length);
}
protected:
virtual pos_type seekoff( off_type offset,
std::ios_base::seekdir dir,
std::ios_base::openmode ) CV_OVERRIDE
{
char* whence = eback();
if (dir == std::ios_base::cur)
{
whence = gptr();
}
else if (dir == std::ios_base::end)
{
whence = egptr();
}
char* to = whence + offset;
// check limits
if (to >= eback() && to <= egptr())
{
setg(eback(), to, egptr());
return gptr() - eback();
}
return -1;
}
};
}
/**
* @struct ImageCodecInitializer
*
* Container which stores the registered codecs to be used by OpenCV
*/
struct ImageCodecInitializer
{
/**
* Default Constructor for the ImageCodeInitializer
*/
ImageCodecInitializer()
{
/// BMP Support
decoders.push_back( makePtr<BmpDecoder>() );
encoders.push_back( makePtr<BmpEncoder>() );
#ifdef HAVE_IMGCODEC_HDR
decoders.push_back( makePtr<HdrDecoder>() );
encoders.push_back( makePtr<HdrEncoder>() );
#endif
#ifdef HAVE_JPEG
decoders.push_back( makePtr<JpegDecoder>() );
encoders.push_back( makePtr<JpegEncoder>() );
#endif
#ifdef HAVE_WEBP
decoders.push_back( makePtr<WebPDecoder>() );
encoders.push_back( makePtr<WebPEncoder>() );
#endif
#ifdef HAVE_IMGCODEC_SUNRASTER
decoders.push_back( makePtr<SunRasterDecoder>() );
encoders.push_back( makePtr<SunRasterEncoder>() );
#endif
#ifdef HAVE_IMGCODEC_PXM
decoders.push_back( makePtr<PxMDecoder>() );
encoders.push_back( makePtr<PxMEncoder>(PXM_TYPE_AUTO) );
encoders.push_back( makePtr<PxMEncoder>(PXM_TYPE_PBM) );
encoders.push_back( makePtr<PxMEncoder>(PXM_TYPE_PGM) );
encoders.push_back( makePtr<PxMEncoder>(PXM_TYPE_PPM) );
decoders.push_back( makePtr<PAMDecoder>() );
encoders.push_back( makePtr<PAMEncoder>() );
#endif
#ifdef HAVE_TIFF
decoders.push_back( makePtr<TiffDecoder>() );
encoders.push_back( makePtr<TiffEncoder>() );
#endif
#ifdef HAVE_PNG
decoders.push_back( makePtr<PngDecoder>() );
encoders.push_back( makePtr<PngEncoder>() );
#endif
#ifdef HAVE_GDCM
decoders.push_back( makePtr<DICOMDecoder>() );
#endif
#ifdef HAVE_JASPER
decoders.push_back( makePtr<Jpeg2KDecoder>() );
encoders.push_back( makePtr<Jpeg2KEncoder>() );
#endif
#ifdef HAVE_OPENEXR
decoders.push_back( makePtr<ExrDecoder>() );
encoders.push_back( makePtr<ExrEncoder>() );
#endif
#ifdef HAVE_GDAL
/// Attach the GDAL Decoder
decoders.push_back( makePtr<GdalDecoder>() );
#endif/*HAVE_GDAL*/
}
std::vector<ImageDecoder> decoders;
std::vector<ImageEncoder> encoders;
};
static ImageCodecInitializer codecs;
/**
* Find the decoders
*
* @param[in] filename File to search
*
* @return Image decoder to parse image file.
*/
static ImageDecoder findDecoder( const String& filename ) {
size_t i, maxlen = 0;
/// iterate through list of registered codecs
for( i = 0; i < codecs.decoders.size(); i++ )
{
size_t len = codecs.decoders[i]->signatureLength();
maxlen = std::max(maxlen, len);
}
/// Open the file
FILE* f= fopen( filename.c_str(), "rb" );
/// in the event of a failure, return an empty image decoder
if( !f )
return ImageDecoder();
// read the file signature
String signature(maxlen, ' ');
maxlen = fread( (void*)signature.c_str(), 1, maxlen, f );
fclose(f);
signature = signature.substr(0, maxlen);
/// compare signature against all decoders
for( i = 0; i < codecs.decoders.size(); i++ )
{
if( codecs.decoders[i]->checkSignature(signature) )
return codecs.decoders[i]->newDecoder();
}
/// If no decoder was found, return base type
return ImageDecoder();
}
static ImageDecoder findDecoder( const Mat& buf )
{
size_t i, maxlen = 0;
if( buf.rows*buf.cols < 1 || !buf.isContinuous() )
return ImageDecoder();
for( i = 0; i < codecs.decoders.size(); i++ )
{
size_t len = codecs.decoders[i]->signatureLength();
maxlen = std::max(maxlen, len);
}
String signature(maxlen, ' ');
size_t bufSize = buf.rows*buf.cols*buf.elemSize();
maxlen = std::min(maxlen, bufSize);
memcpy( (void*)signature.c_str(), buf.data, maxlen );
for( i = 0; i < codecs.decoders.size(); i++ )
{
if( codecs.decoders[i]->checkSignature(signature) )
return codecs.decoders[i]->newDecoder();
}
return ImageDecoder();
}
static ImageEncoder findEncoder( const String& _ext )
{
if( _ext.size() <= 1 )
return ImageEncoder();
const char* ext = strrchr( _ext.c_str(), '.' );
if( !ext )
return ImageEncoder();
int len = 0;
for( ext++; len < 128 && isalnum(ext[len]); len++ )
;
for( size_t i = 0; i < codecs.encoders.size(); i++ )
{
String description = codecs.encoders[i]->getDescription();
const char* descr = strchr( description.c_str(), '(' );
while( descr )
{
descr = strchr( descr + 1, '.' );
if( !descr )
break;
int j = 0;
for( descr++; j < len && isalnum(descr[j]) ; j++ )
{
int c1 = tolower(ext[j]);
int c2 = tolower(descr[j]);
if( c1 != c2 )
break;
}
if( j == len && !isalnum(descr[j]))
return codecs.encoders[i]->newEncoder();
descr += j;
}
}
return ImageEncoder();
}
enum { LOAD_CVMAT=0, LOAD_IMAGE=1, LOAD_MAT=2 };
static void ExifTransform(int orientation, Mat& img)
{
switch( orientation )
{
case IMAGE_ORIENTATION_TL: //0th row == visual top, 0th column == visual left-hand side
//do nothing, the image already has proper orientation
break;
case IMAGE_ORIENTATION_TR: //0th row == visual top, 0th column == visual right-hand side
flip(img, img, 1); //flip horizontally
break;
case IMAGE_ORIENTATION_BR: //0th row == visual bottom, 0th column == visual right-hand side
flip(img, img, -1);//flip both horizontally and vertically
break;
case IMAGE_ORIENTATION_BL: //0th row == visual bottom, 0th column == visual left-hand side
flip(img, img, 0); //flip vertically
break;
case IMAGE_ORIENTATION_LT: //0th row == visual left-hand side, 0th column == visual top
transpose(img, img);
break;
case IMAGE_ORIENTATION_RT: //0th row == visual right-hand side, 0th column == visual top
transpose(img, img);
flip(img, img, 1); //flip horizontally
break;
case IMAGE_ORIENTATION_RB: //0th row == visual right-hand side, 0th column == visual bottom
transpose(img, img);
flip(img, img, -1); //flip both horizontally and vertically
break;
case IMAGE_ORIENTATION_LB: //0th row == visual left-hand side, 0th column == visual bottom
transpose(img, img);
flip(img, img, 0); //flip vertically
break;
default:
//by default the image read has normal (JPEG_ORIENTATION_TL) orientation
break;
}
}
static void ApplyExifOrientation(const String& filename, Mat& img)
{
int orientation = IMAGE_ORIENTATION_TL;
if (filename.size() > 0)
{
std::ifstream stream( filename.c_str(), std::ios_base::in | std::ios_base::binary );
ExifReader reader( stream );
if( reader.parse() )
{
ExifEntry_t entry = reader.getTag( ORIENTATION );
if (entry.tag != INVALID_TAG)
{
orientation = entry.field_u16; //orientation is unsigned short, so check field_u16
}
}
stream.close();
}
ExifTransform(orientation, img);
}
static void ApplyExifOrientation(const Mat& buf, Mat& img)
{
int orientation = IMAGE_ORIENTATION_TL;
if( buf.isContinuous() )
{
ByteStreamBuffer bsb( reinterpret_cast<char*>(buf.data), buf.total() * buf.elemSize() );
std::istream stream( &bsb );
ExifReader reader( stream );
if( reader.parse() )
{
ExifEntry_t entry = reader.getTag( ORIENTATION );
if (entry.tag != INVALID_TAG)
{
orientation = entry.field_u16; //orientation is unsigned short, so check field_u16
}
}
}
ExifTransform(orientation, img);
}
/**
* Read an image into memory and return the information
*
* @param[in] filename File to load
* @param[in] flags Flags
* @param[in] hdrtype { LOAD_CVMAT=0,
* LOAD_IMAGE=1,
* LOAD_MAT=2
* }
* @param[in] mat Reference to C++ Mat object (If LOAD_MAT)
* @param[in] scale_denom Scale value
*
*/
static void*
imread_( const String& filename, int flags, int hdrtype, Mat* mat=0 )
{
CV_Assert(mat || hdrtype != LOAD_MAT); // mat is required in LOAD_MAT case
IplImage* image = 0;
CvMat *matrix = 0;
Mat temp, *data = &temp;
/// Search for the relevant decoder to handle the imagery
ImageDecoder decoder;
#ifdef HAVE_GDAL
if(flags != IMREAD_UNCHANGED && (flags & IMREAD_LOAD_GDAL) == IMREAD_LOAD_GDAL ){
decoder = GdalDecoder().newDecoder();
}else{
#endif
decoder = findDecoder( filename );
#ifdef HAVE_GDAL
}
#endif
/// if no decoder was found, return nothing.
if( !decoder ){
return 0;
}
int scale_denom = 1;
if( flags > IMREAD_LOAD_GDAL )
{
if( flags & IMREAD_REDUCED_GRAYSCALE_2 )
scale_denom = 2;
else if( flags & IMREAD_REDUCED_GRAYSCALE_4 )
scale_denom = 4;
else if( flags & IMREAD_REDUCED_GRAYSCALE_8 )
scale_denom = 8;
}
/// set the scale_denom in the driver
decoder->setScale( scale_denom );
/// set the filename in the driver
decoder->setSource( filename );
try
{
// read the header to make sure it succeeds
if( !decoder->readHeader() )
return 0;
}
catch (const cv::Exception& e)
{
std::cerr << "imread_('" << filename << "'): can't read header: " << e.what() << std::endl << std::flush;
return 0;
}
catch (...)
{
std::cerr << "imread_('" << filename << "'): can't read header: unknown exception" << std::endl << std::flush;
return 0;
}
// established the required input image size
Size size = validateInputImageSize(Size(decoder->width(), decoder->height()));
// grab the decoded type
int type = decoder->type();
if( (flags & IMREAD_LOAD_GDAL) != IMREAD_LOAD_GDAL && flags != IMREAD_UNCHANGED )
{
if( (flags & CV_LOAD_IMAGE_ANYDEPTH) == 0 )
type = CV_MAKETYPE(CV_8U, CV_MAT_CN(type));
if( (flags & CV_LOAD_IMAGE_COLOR) != 0 ||
((flags & CV_LOAD_IMAGE_ANYCOLOR) != 0 && CV_MAT_CN(type) > 1) )
type = CV_MAKETYPE(CV_MAT_DEPTH(type), 3);
else
type = CV_MAKETYPE(CV_MAT_DEPTH(type), 1);
}
if( hdrtype == LOAD_CVMAT || hdrtype == LOAD_MAT )
{
if( hdrtype == LOAD_CVMAT )
{
matrix = cvCreateMat( size.height, size.width, type );
temp = cvarrToMat( matrix );
}
else
{
mat->create( size.height, size.width, type );
data = mat;
}
}
else
{
image = cvCreateImage(cvSize(size), cvIplDepth(type), CV_MAT_CN(type));
temp = cvarrToMat( image );
}
// read the image data
bool success = false;
try
{
if (decoder->readData(*data))
success = true;
}
catch (const cv::Exception& e)
{
std::cerr << "imread_('" << filename << "'): can't read data: " << e.what() << std::endl << std::flush;
}
catch (...)
{
std::cerr << "imread_('" << filename << "'): can't read data: unknown exception" << std::endl << std::flush;
}
if (!success)
{
cvReleaseImage( &image );
cvReleaseMat( &matrix );
if( mat )
mat->release();
return 0;
}
if( decoder->setScale( scale_denom ) > 1 ) // if decoder is JpegDecoder then decoder->setScale always returns 1
{
resize( *mat, *mat, Size( size.width / scale_denom, size.height / scale_denom ), 0, 0, INTER_LINEAR_EXACT);
}
return hdrtype == LOAD_CVMAT ? (void*)matrix :
hdrtype == LOAD_IMAGE ? (void*)image : (void*)mat;
}
/**
* Read an image into memory and return the information
*
* @param[in] filename File to load
* @param[in] flags Flags
* @param[in] mats Reference to C++ vector<Mat> object to hold the images
*
*/
static bool
imreadmulti_(const String& filename, int flags, std::vector<Mat>& mats)
{
/// Search for the relevant decoder to handle the imagery
ImageDecoder decoder;
#ifdef HAVE_GDAL
if (flags != IMREAD_UNCHANGED && (flags & IMREAD_LOAD_GDAL) == IMREAD_LOAD_GDAL){
decoder = GdalDecoder().newDecoder();
}
else{
#endif
decoder = findDecoder(filename);
#ifdef HAVE_GDAL
}
#endif
/// if no decoder was found, return nothing.
if (!decoder){
return 0;
}
/// set the filename in the driver
decoder->setSource(filename);
// read the header to make sure it succeeds
try
{
// read the header to make sure it succeeds
if( !decoder->readHeader() )
return 0;
}
catch (const cv::Exception& e)
{
std::cerr << "imreadmulti_('" << filename << "'): can't read header: " << e.what() << std::endl << std::flush;
return 0;
}
catch (...)
{
std::cerr << "imreadmulti_('" << filename << "'): can't read header: unknown exception" << std::endl << std::flush;
return 0;
}
for (;;)
{
// grab the decoded type
int type = decoder->type();
if( (flags & IMREAD_LOAD_GDAL) != IMREAD_LOAD_GDAL && flags != IMREAD_UNCHANGED )
{
if ((flags & CV_LOAD_IMAGE_ANYDEPTH) == 0)
type = CV_MAKETYPE(CV_8U, CV_MAT_CN(type));
if ((flags & CV_LOAD_IMAGE_COLOR) != 0 ||
((flags & CV_LOAD_IMAGE_ANYCOLOR) != 0 && CV_MAT_CN(type) > 1))
type = CV_MAKETYPE(CV_MAT_DEPTH(type), 3);
else
type = CV_MAKETYPE(CV_MAT_DEPTH(type), 1);
}
// established the required input image size
Size size = validateInputImageSize(Size(decoder->width(), decoder->height()));
// read the image data
Mat mat(size.height, size.width, type);
bool success = false;
try
{
if (decoder->readData(mat))
success = true;
}
catch (const cv::Exception& e)
{
std::cerr << "imreadmulti_('" << filename << "'): can't read data: " << e.what() << std::endl << std::flush;
}
catch (...)
{
std::cerr << "imreadmulti_('" << filename << "'): can't read data: unknown exception" << std::endl << std::flush;
}
if (!success)
break;
// optionally rotate the data if EXIF' orientation flag says so
if( (flags & IMREAD_IGNORE_ORIENTATION) == 0 && flags != IMREAD_UNCHANGED )
{
ApplyExifOrientation(filename, mat);
}
mats.push_back(mat);
if (!decoder->nextPage())
{
break;
}
}
return !mats.empty();
}
/**
* Read an image
*
* This function merely calls the actual implementation above and returns itself.
*
* @param[in] filename File to load
* @param[in] flags Flags you wish to set.
*/
Mat imread( const String& filename, int flags )
{
CV_TRACE_FUNCTION();
/// create the basic container
Mat img;
/// load the data
imread_( filename, flags, LOAD_MAT, &img );
/// optionally rotate the data if EXIF' orientation flag says so
if( !img.empty() && (flags & IMREAD_IGNORE_ORIENTATION) == 0 && flags != IMREAD_UNCHANGED )
{
ApplyExifOrientation(filename, img);
}
/// return a reference to the data
return img;
}
/**
* Read a multi-page image
*
* This function merely calls the actual implementation above and returns itself.
*
* @param[in] filename File to load
* @param[in] mats Reference to C++ vector<Mat> object to hold the images
* @param[in] flags Flags you wish to set.
*
*/
bool imreadmulti(const String& filename, std::vector<Mat>& mats, int flags)
{
CV_TRACE_FUNCTION();
return imreadmulti_(filename, flags, mats);
}
static bool imwrite_( const String& filename, const std::vector<Mat>& img_vec,
const std::vector<int>& params, bool flipv )
{
bool isMultiImg = img_vec.size() > 1;
std::vector<Mat> write_vec;
ImageEncoder encoder = findEncoder( filename );
if( !encoder )
CV_Error( CV_StsError, "could not find a writer for the specified extension" );
for (size_t page = 0; page < img_vec.size(); page++)
{
Mat image = img_vec[page];
CV_Assert( image.channels() == 1 || image.channels() == 3 || image.channels() == 4 );
Mat temp;
if( !encoder->isFormatSupported(image.depth()) )
{
CV_Assert( encoder->isFormatSupported(CV_8U) );
image.convertTo( temp, CV_8U );
image = temp;
}
if( flipv )
{
flip(image, temp, 0);
image = temp;
}
write_vec.push_back(image);
}
encoder->setDestination( filename );
CV_Assert(params.size() <= CV_IO_MAX_IMAGE_PARAMS*2);
bool code = false;
try
{
if (!isMultiImg)
code = encoder->write( write_vec[0], params );
else
code = encoder->writemulti( write_vec, params ); //to be implemented
}
catch (const cv::Exception& e)
{
std::cerr << "imwrite_('" << filename << "'): can't write data: " << e.what() << std::endl << std::flush;
}
catch (...)
{
std::cerr << "imwrite_('" << filename << "'): can't write data: unknown exception" << std::endl << std::flush;
}
// CV_Assert( code );
return code;
}
bool imwrite( const String& filename, InputArray _img,
const std::vector<int>& params )
{
CV_TRACE_FUNCTION();
std::vector<Mat> img_vec;
if (_img.isMatVector() || _img.isUMatVector())
_img.getMatVector(img_vec);
else
img_vec.push_back(_img.getMat());
CV_Assert(!img_vec.empty());
return imwrite_(filename, img_vec, params, false);
}
static void*
imdecode_( const Mat& buf, int flags, int hdrtype, Mat* mat=0 )
{
CV_Assert(!buf.empty() && buf.isContinuous());
IplImage* image = 0;
CvMat *matrix = 0;
Mat temp, *data = &temp;
String filename;
ImageDecoder decoder = findDecoder(buf);
if( !decoder )
return 0;
if( !decoder->setSource(buf) )
{
filename = tempfile();
FILE* f = fopen( filename.c_str(), "wb" );
if( !f )
return 0;
size_t bufSize = buf.cols*buf.rows*buf.elemSize();
if( fwrite( buf.ptr(), 1, bufSize, f ) != bufSize )
{
fclose( f );
CV_Error( CV_StsError, "failed to write image data to temporary file" );
}
if( fclose(f) != 0 )
{
CV_Error( CV_StsError, "failed to write image data to temporary file" );
}
decoder->setSource(filename);
}
bool success = false;
try
{
if (decoder->readHeader())
success = true;
}
catch (const cv::Exception& e)
{
std::cerr << "imdecode_('" << filename << "'): can't read header: " << e.what() << std::endl << std::flush;
}
catch (...)
{
std::cerr << "imdecode_('" << filename << "'): can't read header: unknown exception" << std::endl << std::flush;
}
if (!success)
{
decoder.release();
if (!filename.empty())
{
if (0 != remove(filename.c_str()))
{
std::cerr << "unable to remove temporary file:" << filename << std::endl << std::flush;
}
}
return 0;
}
// established the required input image size
Size size = validateInputImageSize(Size(decoder->width(), decoder->height()));
int type = decoder->type();
if( (flags & IMREAD_LOAD_GDAL) != IMREAD_LOAD_GDAL && flags != IMREAD_UNCHANGED )
{
if( (flags & CV_LOAD_IMAGE_ANYDEPTH) == 0 )
type = CV_MAKETYPE(CV_8U, CV_MAT_CN(type));
if( (flags & CV_LOAD_IMAGE_COLOR) != 0 ||
((flags & CV_LOAD_IMAGE_ANYCOLOR) != 0 && CV_MAT_CN(type) > 1) )
type = CV_MAKETYPE(CV_MAT_DEPTH(type), 3);
else
type = CV_MAKETYPE(CV_MAT_DEPTH(type), 1);
}
if( hdrtype == LOAD_CVMAT || hdrtype == LOAD_MAT )
{
if( hdrtype == LOAD_CVMAT )
{
matrix = cvCreateMat( size.height, size.width, type );
temp = cvarrToMat(matrix);
}
else
{
mat->create( size.height, size.width, type );
data = mat;
}
}
else
{
image = cvCreateImage(cvSize(size), cvIplDepth(type), CV_MAT_CN(type));
temp = cvarrToMat(image);
}
success = false;
try
{
if (decoder->readData(*data))
success = true;
}
catch (const cv::Exception& e)
{
std::cerr << "imdecode_('" << filename << "'): can't read data: " << e.what() << std::endl << std::flush;
}
catch (...)
{
std::cerr << "imdecode_('" << filename << "'): can't read data: unknown exception" << std::endl << std::flush;
}
decoder.release();
if (!filename.empty())
{
if (0 != remove(filename.c_str()))
{
std::cerr << "unable to remove temporary file:" << filename << std::endl << std::flush;
}
}
if (!success)
{
cvReleaseImage( &image );
cvReleaseMat( &matrix );
if( mat )
mat->release();
return 0;
}
return hdrtype == LOAD_CVMAT ? (void*)matrix :
hdrtype == LOAD_IMAGE ? (void*)image : (void*)mat;
}
Mat imdecode( InputArray _buf, int flags )
{
CV_TRACE_FUNCTION();
Mat buf = _buf.getMat(), img;
imdecode_( buf, flags, LOAD_MAT, &img );
/// optionally rotate the data if EXIF' orientation flag says so
if( !img.empty() && (flags & IMREAD_IGNORE_ORIENTATION) == 0 && flags != IMREAD_UNCHANGED )
{
ApplyExifOrientation(buf, img);
}
return img;
}
Mat imdecode( InputArray _buf, int flags, Mat* dst )
{
CV_TRACE_FUNCTION();
Mat buf = _buf.getMat(), img;
dst = dst ? dst : &img;
imdecode_( buf, flags, LOAD_MAT, dst );
/// optionally rotate the data if EXIF' orientation flag says so
if( !dst->empty() && (flags & IMREAD_IGNORE_ORIENTATION) == 0 && flags != IMREAD_UNCHANGED )
{
ApplyExifOrientation(buf, *dst);
}
return *dst;
}
bool imencode( const String& ext, InputArray _image,
std::vector<uchar>& buf, const std::vector<int>& params )
{
CV_TRACE_FUNCTION();
Mat image = _image.getMat();
int channels = image.channels();
CV_Assert( channels == 1 || channels == 3 || channels == 4 );
ImageEncoder encoder = findEncoder( ext );
if( !encoder )
CV_Error( CV_StsError, "could not find encoder for the specified extension" );
if( !encoder->isFormatSupported(image.depth()) )
{
CV_Assert( encoder->isFormatSupported(CV_8U) );
Mat temp;
image.convertTo(temp, CV_8U);
image = temp;
}
bool code;
if( encoder->setDestination(buf) )
{
code = encoder->write(image, params);
encoder->throwOnEror();
CV_Assert( code );
}
else
{
String filename = tempfile();
code = encoder->setDestination(filename);
CV_Assert( code );
code = encoder->write(image, params);
encoder->throwOnEror();
CV_Assert( code );
FILE* f = fopen( filename.c_str(), "rb" );
CV_Assert(f != 0);
fseek( f, 0, SEEK_END );
long pos = ftell(f);
buf.resize((size_t)pos);
fseek( f, 0, SEEK_SET );
buf.resize(fread( &buf[0], 1, buf.size(), f ));
fclose(f);
remove(filename.c_str());
}
return code;
}
}
/****************************************************************************************\
* Imgcodecs loading & saving function implementation *
\****************************************************************************************/
CV_IMPL int
cvHaveImageReader( const char* filename )
{
cv::ImageDecoder decoder = cv::findDecoder(filename);
return !decoder.empty();
}
CV_IMPL int cvHaveImageWriter( const char* filename )
{
cv::ImageEncoder encoder = cv::findEncoder(filename);
return !encoder.empty();
}
CV_IMPL IplImage*
cvLoadImage( const char* filename, int iscolor )
{
return (IplImage*)cv::imread_(filename, iscolor, cv::LOAD_IMAGE );
}
CV_IMPL CvMat*
cvLoadImageM( const char* filename, int iscolor )
{
return (CvMat*)cv::imread_( filename, iscolor, cv::LOAD_CVMAT );
}
CV_IMPL int
cvSaveImage( const char* filename, const CvArr* arr, const int* _params )
{
int i = 0;
if( _params )
{
for( ; _params[i] > 0; i += 2 )
CV_Assert(static_cast<size_t>(i) < cv::CV_IO_MAX_IMAGE_PARAMS*2); // Limit number of params for security reasons
}
return cv::imwrite_(filename, cv::cvarrToMat(arr),
i > 0 ? std::vector<int>(_params, _params+i) : std::vector<int>(),
CV_IS_IMAGE(arr) && ((const IplImage*)arr)->origin == IPL_ORIGIN_BL );
}
/* decode image stored in the buffer */
CV_IMPL IplImage*
cvDecodeImage( const CvMat* _buf, int iscolor )
{
CV_Assert( _buf && CV_IS_MAT_CONT(_buf->type) );
cv::Mat buf(1, _buf->rows*_buf->cols*CV_ELEM_SIZE(_buf->type), CV_8U, _buf->data.ptr);
return (IplImage*)cv::imdecode_(buf, iscolor, cv::LOAD_IMAGE );
}
CV_IMPL CvMat*
cvDecodeImageM( const CvMat* _buf, int iscolor )
{
CV_Assert( _buf && CV_IS_MAT_CONT(_buf->type) );
cv::Mat buf(1, _buf->rows*_buf->cols*CV_ELEM_SIZE(_buf->type), CV_8U, _buf->data.ptr);
return (CvMat*)cv::imdecode_(buf, iscolor, cv::LOAD_CVMAT );
}
CV_IMPL CvMat*
cvEncodeImage( const char* ext, const CvArr* arr, const int* _params )
{
int i = 0;
if( _params )
{
for( ; _params[i] > 0; i += 2 )
CV_Assert(static_cast<size_t>(i) < cv::CV_IO_MAX_IMAGE_PARAMS*2); // Limit number of params for security reasons
}
cv::Mat img = cv::cvarrToMat(arr);
if( CV_IS_IMAGE(arr) && ((const IplImage*)arr)->origin == IPL_ORIGIN_BL )
{
cv::Mat temp;
cv::flip(img, temp, 0);
img = temp;
}
std::vector<uchar> buf;
bool code = cv::imencode(ext, img, buf,
i > 0 ? std::vector<int>(_params, _params+i) : std::vector<int>() );
if( !code )
return 0;
CvMat* _buf = cvCreateMat(1, (int)buf.size(), CV_8U);
memcpy( _buf->data.ptr, &buf[0], buf.size() );
return _buf;
}
/* End of file. */