mirror of
https://github.com/opencv/opencv.git
synced 2024-12-12 15:19:11 +08:00
1120 lines
30 KiB
C++
1120 lines
30 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
#ifdef HAVE_CUDA
|
|
|
|
using namespace cvtest;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Norm
|
|
|
|
PARAM_TEST_CASE(Norm, cv::cuda::DeviceInfo, cv::Size, MatDepth, NormCode, UseRoi)
|
|
{
|
|
cv::cuda::DeviceInfo devInfo;
|
|
cv::Size size;
|
|
int depth;
|
|
int normCode;
|
|
bool useRoi;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GET_PARAM(0);
|
|
size = GET_PARAM(1);
|
|
depth = GET_PARAM(2);
|
|
normCode = GET_PARAM(3);
|
|
useRoi = GET_PARAM(4);
|
|
|
|
cv::cuda::setDevice(devInfo.deviceID());
|
|
}
|
|
};
|
|
|
|
CUDA_TEST_P(Norm, Accuracy)
|
|
{
|
|
cv::Mat src = randomMat(size, depth);
|
|
cv::Mat mask = randomMat(size, CV_8UC1, 0, 2);
|
|
|
|
double val = cv::cuda::norm(loadMat(src, useRoi), normCode, loadMat(mask, useRoi));
|
|
|
|
double val_gold = cv::norm(src, normCode, mask);
|
|
|
|
EXPECT_NEAR(val_gold, val, depth < CV_32F ? 0.0 : 1.0);
|
|
}
|
|
|
|
CUDA_TEST_P(Norm, Async)
|
|
{
|
|
cv::Mat src = randomMat(size, depth);
|
|
cv::Mat mask = randomMat(size, CV_8UC1, 0, 2);
|
|
|
|
cv::cuda::Stream stream;
|
|
|
|
cv::cuda::HostMem dst;
|
|
cv::cuda::calcNorm(loadMat(src, useRoi), dst, normCode, loadMat(mask, useRoi), stream);
|
|
|
|
stream.waitForCompletion();
|
|
|
|
double val;
|
|
dst.createMatHeader().convertTo(cv::Mat(1, 1, CV_64FC1, &val), CV_64F);
|
|
|
|
double val_gold = cv::norm(src, normCode, mask);
|
|
|
|
EXPECT_NEAR(val_gold, val, depth < CV_32F ? 0.0 : 1.0);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_Arithm, Norm, testing::Combine(
|
|
ALL_DEVICES,
|
|
DIFFERENT_SIZES,
|
|
testing::Values(MatDepth(CV_8U),
|
|
MatDepth(CV_8S),
|
|
MatDepth(CV_16U),
|
|
MatDepth(CV_16S),
|
|
MatDepth(CV_32S),
|
|
MatDepth(CV_32F)),
|
|
testing::Values(NormCode(cv::NORM_L1), NormCode(cv::NORM_L2), NormCode(cv::NORM_INF)),
|
|
WHOLE_SUBMAT));
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// normDiff
|
|
|
|
PARAM_TEST_CASE(NormDiff, cv::cuda::DeviceInfo, cv::Size, NormCode, UseRoi)
|
|
{
|
|
cv::cuda::DeviceInfo devInfo;
|
|
cv::Size size;
|
|
int normCode;
|
|
bool useRoi;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GET_PARAM(0);
|
|
size = GET_PARAM(1);
|
|
normCode = GET_PARAM(2);
|
|
useRoi = GET_PARAM(3);
|
|
|
|
cv::cuda::setDevice(devInfo.deviceID());
|
|
}
|
|
};
|
|
|
|
CUDA_TEST_P(NormDiff, Accuracy)
|
|
{
|
|
cv::Mat src1 = randomMat(size, CV_8UC1);
|
|
cv::Mat src2 = randomMat(size, CV_8UC1);
|
|
|
|
double val = cv::cuda::norm(loadMat(src1, useRoi), loadMat(src2, useRoi), normCode);
|
|
|
|
double val_gold = cv::norm(src1, src2, normCode);
|
|
|
|
EXPECT_NEAR(val_gold, val, 0.0);
|
|
}
|
|
|
|
CUDA_TEST_P(NormDiff, Async)
|
|
{
|
|
cv::Mat src1 = randomMat(size, CV_8UC1);
|
|
cv::Mat src2 = randomMat(size, CV_8UC1);
|
|
|
|
cv::cuda::Stream stream;
|
|
|
|
cv::cuda::HostMem dst;
|
|
cv::cuda::calcNormDiff(loadMat(src1, useRoi), loadMat(src2, useRoi), dst, normCode, stream);
|
|
|
|
stream.waitForCompletion();
|
|
|
|
double val;
|
|
const cv::Mat val_mat(1, 1, CV_64FC1, &val);
|
|
dst.createMatHeader().convertTo(val_mat, CV_64F);
|
|
|
|
double val_gold = cv::norm(src1, src2, normCode);
|
|
|
|
EXPECT_NEAR(val_gold, val, 0.0);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_Arithm, NormDiff, testing::Combine(
|
|
ALL_DEVICES,
|
|
DIFFERENT_SIZES,
|
|
testing::Values(NormCode(cv::NORM_L1), NormCode(cv::NORM_L2), NormCode(cv::NORM_INF)),
|
|
WHOLE_SUBMAT));
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// Sum
|
|
|
|
namespace
|
|
{
|
|
template <typename T>
|
|
cv::Scalar absSumImpl(const cv::Mat& src)
|
|
{
|
|
const int cn = src.channels();
|
|
|
|
cv::Scalar sum = cv::Scalar::all(0);
|
|
|
|
for (int y = 0; y < src.rows; ++y)
|
|
{
|
|
for (int x = 0; x < src.cols; ++x)
|
|
{
|
|
for (int c = 0; c < cn; ++c)
|
|
sum[c] += std::abs(src.at<T>(y, x * cn + c));
|
|
}
|
|
}
|
|
|
|
return sum;
|
|
}
|
|
|
|
cv::Scalar absSumGold(const cv::Mat& src)
|
|
{
|
|
typedef cv::Scalar (*func_t)(const cv::Mat& src);
|
|
|
|
static const func_t funcs[] =
|
|
{
|
|
absSumImpl<uchar>,
|
|
absSumImpl<schar>,
|
|
absSumImpl<ushort>,
|
|
absSumImpl<short>,
|
|
absSumImpl<int>,
|
|
absSumImpl<float>,
|
|
absSumImpl<double>
|
|
};
|
|
|
|
return funcs[src.depth()](src);
|
|
}
|
|
|
|
template <typename T>
|
|
cv::Scalar sqrSumImpl(const cv::Mat& src)
|
|
{
|
|
const int cn = src.channels();
|
|
|
|
cv::Scalar sum = cv::Scalar::all(0);
|
|
|
|
for (int y = 0; y < src.rows; ++y)
|
|
{
|
|
for (int x = 0; x < src.cols; ++x)
|
|
{
|
|
for (int c = 0; c < cn; ++c)
|
|
{
|
|
const T val = src.at<T>(y, x * cn + c);
|
|
sum[c] += val * val;
|
|
}
|
|
}
|
|
}
|
|
|
|
return sum;
|
|
}
|
|
|
|
cv::Scalar sqrSumGold(const cv::Mat& src)
|
|
{
|
|
typedef cv::Scalar (*func_t)(const cv::Mat& src);
|
|
|
|
static const func_t funcs[] =
|
|
{
|
|
sqrSumImpl<uchar>,
|
|
sqrSumImpl<schar>,
|
|
sqrSumImpl<ushort>,
|
|
sqrSumImpl<short>,
|
|
sqrSumImpl<int>,
|
|
sqrSumImpl<float>,
|
|
sqrSumImpl<double>
|
|
};
|
|
|
|
return funcs[src.depth()](src);
|
|
}
|
|
}
|
|
|
|
PARAM_TEST_CASE(Sum, cv::cuda::DeviceInfo, cv::Size, MatType, UseRoi)
|
|
{
|
|
cv::cuda::DeviceInfo devInfo;
|
|
cv::Size size;
|
|
int type;
|
|
bool useRoi;
|
|
|
|
cv::Mat src;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GET_PARAM(0);
|
|
size = GET_PARAM(1);
|
|
type = GET_PARAM(2);
|
|
useRoi = GET_PARAM(3);
|
|
|
|
cv::cuda::setDevice(devInfo.deviceID());
|
|
|
|
src = randomMat(size, type, -128.0, 128.0);
|
|
}
|
|
};
|
|
|
|
CUDA_TEST_P(Sum, Simple)
|
|
{
|
|
cv::Scalar val = cv::cuda::sum(loadMat(src, useRoi));
|
|
|
|
cv::Scalar val_gold = cv::sum(src);
|
|
|
|
EXPECT_SCALAR_NEAR(val_gold, val, CV_MAT_DEPTH(type) < CV_32F ? 0.0 : 0.5);
|
|
}
|
|
|
|
CUDA_TEST_P(Sum, Simple_Async)
|
|
{
|
|
cv::cuda::Stream stream;
|
|
|
|
cv::cuda::HostMem dst;
|
|
cv::cuda::calcSum(loadMat(src, useRoi), dst, cv::noArray(), stream);
|
|
|
|
stream.waitForCompletion();
|
|
|
|
cv::Scalar val;
|
|
cv::Mat val_mat(dst.size(), CV_64FC(dst.channels()), val.val);
|
|
dst.createMatHeader().convertTo(val_mat, CV_64F);
|
|
|
|
cv::Scalar val_gold = cv::sum(src);
|
|
|
|
EXPECT_SCALAR_NEAR(val_gold, val, CV_MAT_DEPTH(type) < CV_32F ? 0.0 : 0.5);
|
|
}
|
|
|
|
CUDA_TEST_P(Sum, Abs)
|
|
{
|
|
cv::Scalar val = cv::cuda::absSum(loadMat(src, useRoi));
|
|
|
|
cv::Scalar val_gold = absSumGold(src);
|
|
|
|
EXPECT_SCALAR_NEAR(val_gold, val, CV_MAT_DEPTH(type) < CV_32F ? 0.0 : 0.5);
|
|
}
|
|
|
|
CUDA_TEST_P(Sum, Abs_Async)
|
|
{
|
|
cv::cuda::Stream stream;
|
|
|
|
cv::cuda::HostMem dst;
|
|
cv::cuda::calcAbsSum(loadMat(src, useRoi), dst, cv::noArray(), stream);
|
|
|
|
stream.waitForCompletion();
|
|
|
|
cv::Scalar val;
|
|
cv::Mat val_mat(dst.size(), CV_64FC(dst.channels()), val.val);
|
|
dst.createMatHeader().convertTo(val_mat, CV_64F);
|
|
|
|
cv::Scalar val_gold = absSumGold(src);
|
|
|
|
EXPECT_SCALAR_NEAR(val_gold, val, CV_MAT_DEPTH(type) < CV_32F ? 0.0 : 0.5);
|
|
}
|
|
|
|
CUDA_TEST_P(Sum, Sqr)
|
|
{
|
|
cv::Scalar val = cv::cuda::sqrSum(loadMat(src, useRoi));
|
|
|
|
cv::Scalar val_gold = sqrSumGold(src);
|
|
|
|
EXPECT_SCALAR_NEAR(val_gold, val, CV_MAT_DEPTH(type) < CV_32F ? 0.0 : 0.5);
|
|
}
|
|
|
|
CUDA_TEST_P(Sum, Sqr_Async)
|
|
{
|
|
cv::cuda::Stream stream;
|
|
|
|
cv::cuda::HostMem dst;
|
|
cv::cuda::calcSqrSum(loadMat(src, useRoi), dst, cv::noArray(), stream);
|
|
|
|
stream.waitForCompletion();
|
|
|
|
cv::Scalar val;
|
|
cv::Mat val_mat(dst.size(), CV_64FC(dst.channels()), val.val);
|
|
dst.createMatHeader().convertTo(val_mat, CV_64F);
|
|
|
|
cv::Scalar val_gold = sqrSumGold(src);
|
|
|
|
EXPECT_SCALAR_NEAR(val_gold, val, CV_MAT_DEPTH(type) < CV_32F ? 0.0 : 0.5);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_Arithm, Sum, testing::Combine(
|
|
ALL_DEVICES,
|
|
DIFFERENT_SIZES,
|
|
TYPES(CV_8U, CV_64F, 1, 4),
|
|
WHOLE_SUBMAT));
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// MinMax
|
|
|
|
PARAM_TEST_CASE(MinMax, cv::cuda::DeviceInfo, cv::Size, MatDepth, UseRoi)
|
|
{
|
|
cv::cuda::DeviceInfo devInfo;
|
|
cv::Size size;
|
|
int depth;
|
|
bool useRoi;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GET_PARAM(0);
|
|
size = GET_PARAM(1);
|
|
depth = GET_PARAM(2);
|
|
useRoi = GET_PARAM(3);
|
|
|
|
cv::cuda::setDevice(devInfo.deviceID());
|
|
}
|
|
};
|
|
|
|
CUDA_TEST_P(MinMax, WithoutMask)
|
|
{
|
|
cv::Mat src = randomMat(size, depth);
|
|
|
|
if (depth == CV_64F && !supportFeature(devInfo, cv::cuda::NATIVE_DOUBLE))
|
|
{
|
|
try
|
|
{
|
|
double minVal, maxVal;
|
|
cv::cuda::minMax(loadMat(src), &minVal, &maxVal);
|
|
}
|
|
catch (const cv::Exception& e)
|
|
{
|
|
ASSERT_EQ(cv::Error::StsUnsupportedFormat, e.code);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
double minVal, maxVal;
|
|
cv::cuda::minMax(loadMat(src, useRoi), &minVal, &maxVal);
|
|
|
|
double minVal_gold, maxVal_gold;
|
|
minMaxLocGold(src, &minVal_gold, &maxVal_gold);
|
|
|
|
EXPECT_DOUBLE_EQ(minVal_gold, minVal);
|
|
EXPECT_DOUBLE_EQ(maxVal_gold, maxVal);
|
|
}
|
|
}
|
|
|
|
CUDA_TEST_P(MinMax, Async)
|
|
{
|
|
cv::Mat src = randomMat(size, depth);
|
|
|
|
cv::cuda::Stream stream;
|
|
|
|
cv::cuda::HostMem dst;
|
|
cv::cuda::findMinMax(loadMat(src, useRoi), dst, cv::noArray(), stream);
|
|
|
|
stream.waitForCompletion();
|
|
|
|
double vals[2];
|
|
const cv::Mat vals_mat(1, 2, CV_64FC1, &vals[0]);
|
|
dst.createMatHeader().convertTo(vals_mat, CV_64F);
|
|
|
|
double minVal_gold, maxVal_gold;
|
|
minMaxLocGold(src, &minVal_gold, &maxVal_gold);
|
|
|
|
EXPECT_DOUBLE_EQ(minVal_gold, vals[0]);
|
|
EXPECT_DOUBLE_EQ(maxVal_gold, vals[1]);
|
|
}
|
|
|
|
CUDA_TEST_P(MinMax, WithMask)
|
|
{
|
|
cv::Mat src = randomMat(size, depth);
|
|
cv::Mat mask = randomMat(size, CV_8UC1, 0.0, 2.0);
|
|
|
|
if (depth == CV_64F && !supportFeature(devInfo, cv::cuda::NATIVE_DOUBLE))
|
|
{
|
|
try
|
|
{
|
|
double minVal, maxVal;
|
|
cv::cuda::minMax(loadMat(src), &minVal, &maxVal, loadMat(mask));
|
|
}
|
|
catch (const cv::Exception& e)
|
|
{
|
|
ASSERT_EQ(cv::Error::StsUnsupportedFormat, e.code);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
double minVal, maxVal;
|
|
cv::cuda::minMax(loadMat(src, useRoi), &minVal, &maxVal, loadMat(mask, useRoi));
|
|
|
|
double minVal_gold, maxVal_gold;
|
|
minMaxLocGold(src, &minVal_gold, &maxVal_gold, 0, 0, mask);
|
|
|
|
EXPECT_DOUBLE_EQ(minVal_gold, minVal);
|
|
EXPECT_DOUBLE_EQ(maxVal_gold, maxVal);
|
|
}
|
|
}
|
|
|
|
CUDA_TEST_P(MinMax, NullPtr)
|
|
{
|
|
cv::Mat src = randomMat(size, depth);
|
|
|
|
if (depth == CV_64F && !supportFeature(devInfo, cv::cuda::NATIVE_DOUBLE))
|
|
{
|
|
try
|
|
{
|
|
double minVal, maxVal;
|
|
cv::cuda::minMax(loadMat(src), &minVal, 0);
|
|
cv::cuda::minMax(loadMat(src), 0, &maxVal);
|
|
}
|
|
catch (const cv::Exception& e)
|
|
{
|
|
ASSERT_EQ(cv::Error::StsUnsupportedFormat, e.code);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
double minVal, maxVal;
|
|
cv::cuda::minMax(loadMat(src, useRoi), &minVal, 0);
|
|
cv::cuda::minMax(loadMat(src, useRoi), 0, &maxVal);
|
|
|
|
double minVal_gold, maxVal_gold;
|
|
minMaxLocGold(src, &minVal_gold, &maxVal_gold, 0, 0);
|
|
|
|
EXPECT_DOUBLE_EQ(minVal_gold, minVal);
|
|
EXPECT_DOUBLE_EQ(maxVal_gold, maxVal);
|
|
}
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_Arithm, MinMax, testing::Combine(
|
|
ALL_DEVICES,
|
|
DIFFERENT_SIZES,
|
|
ALL_DEPTH,
|
|
WHOLE_SUBMAT));
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// MinMaxLoc
|
|
|
|
namespace
|
|
{
|
|
template <typename T>
|
|
void expectEqualImpl(const cv::Mat& src, cv::Point loc_gold, cv::Point loc)
|
|
{
|
|
EXPECT_EQ(src.at<T>(loc_gold.y, loc_gold.x), src.at<T>(loc.y, loc.x));
|
|
}
|
|
|
|
void expectEqual(const cv::Mat& src, cv::Point loc_gold, cv::Point loc)
|
|
{
|
|
typedef void (*func_t)(const cv::Mat& src, cv::Point loc_gold, cv::Point loc);
|
|
|
|
static const func_t funcs[] =
|
|
{
|
|
expectEqualImpl<uchar>,
|
|
expectEqualImpl<schar>,
|
|
expectEqualImpl<ushort>,
|
|
expectEqualImpl<short>,
|
|
expectEqualImpl<int>,
|
|
expectEqualImpl<float>,
|
|
expectEqualImpl<double>
|
|
};
|
|
|
|
funcs[src.depth()](src, loc_gold, loc);
|
|
}
|
|
}
|
|
|
|
PARAM_TEST_CASE(MinMaxLoc, cv::cuda::DeviceInfo, cv::Size, MatDepth, UseRoi)
|
|
{
|
|
cv::cuda::DeviceInfo devInfo;
|
|
cv::Size size;
|
|
int depth;
|
|
bool useRoi;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GET_PARAM(0);
|
|
size = GET_PARAM(1);
|
|
depth = GET_PARAM(2);
|
|
useRoi = GET_PARAM(3);
|
|
|
|
cv::cuda::setDevice(devInfo.deviceID());
|
|
}
|
|
};
|
|
|
|
CUDA_TEST_P(MinMaxLoc, WithoutMask)
|
|
{
|
|
cv::Mat src = randomMat(size, depth);
|
|
|
|
if (depth == CV_64F && !supportFeature(devInfo, cv::cuda::NATIVE_DOUBLE))
|
|
{
|
|
try
|
|
{
|
|
double minVal, maxVal;
|
|
cv::Point minLoc, maxLoc;
|
|
cv::cuda::minMaxLoc(loadMat(src), &minVal, &maxVal, &minLoc, &maxLoc);
|
|
}
|
|
catch (const cv::Exception& e)
|
|
{
|
|
ASSERT_EQ(cv::Error::StsUnsupportedFormat, e.code);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
double minVal, maxVal;
|
|
cv::Point minLoc, maxLoc;
|
|
cv::cuda::minMaxLoc(loadMat(src, useRoi), &minVal, &maxVal, &minLoc, &maxLoc);
|
|
|
|
double minVal_gold, maxVal_gold;
|
|
cv::Point minLoc_gold, maxLoc_gold;
|
|
minMaxLocGold(src, &minVal_gold, &maxVal_gold, &minLoc_gold, &maxLoc_gold);
|
|
|
|
EXPECT_DOUBLE_EQ(minVal_gold, minVal);
|
|
EXPECT_DOUBLE_EQ(maxVal_gold, maxVal);
|
|
|
|
expectEqual(src, minLoc_gold, minLoc);
|
|
expectEqual(src, maxLoc_gold, maxLoc);
|
|
}
|
|
}
|
|
|
|
CUDA_TEST_P(MinMaxLoc, OneRowMat)
|
|
{
|
|
cv::Mat src = randomMat(cv::Size(size.width, 1), depth);
|
|
|
|
double minVal, maxVal;
|
|
cv::Point minLoc, maxLoc;
|
|
cv::cuda::minMaxLoc(loadMat(src, useRoi), &minVal, &maxVal, &minLoc, &maxLoc);
|
|
|
|
double minVal_gold, maxVal_gold;
|
|
cv::Point minLoc_gold, maxLoc_gold;
|
|
minMaxLocGold(src, &minVal_gold, &maxVal_gold, &minLoc_gold, &maxLoc_gold);
|
|
|
|
EXPECT_DOUBLE_EQ(minVal_gold, minVal);
|
|
EXPECT_DOUBLE_EQ(maxVal_gold, maxVal);
|
|
|
|
expectEqual(src, minLoc_gold, minLoc);
|
|
expectEqual(src, maxLoc_gold, maxLoc);
|
|
}
|
|
|
|
CUDA_TEST_P(MinMaxLoc, OneColumnMat)
|
|
{
|
|
cv::Mat src = randomMat(cv::Size(1, size.height), depth);
|
|
|
|
double minVal, maxVal;
|
|
cv::Point minLoc, maxLoc;
|
|
cv::cuda::minMaxLoc(loadMat(src, useRoi), &minVal, &maxVal, &minLoc, &maxLoc);
|
|
|
|
double minVal_gold, maxVal_gold;
|
|
cv::Point minLoc_gold, maxLoc_gold;
|
|
minMaxLocGold(src, &minVal_gold, &maxVal_gold, &minLoc_gold, &maxLoc_gold);
|
|
|
|
EXPECT_DOUBLE_EQ(minVal_gold, minVal);
|
|
EXPECT_DOUBLE_EQ(maxVal_gold, maxVal);
|
|
|
|
expectEqual(src, minLoc_gold, minLoc);
|
|
expectEqual(src, maxLoc_gold, maxLoc);
|
|
}
|
|
|
|
CUDA_TEST_P(MinMaxLoc, Async)
|
|
{
|
|
cv::Mat src = randomMat(size, depth);
|
|
|
|
cv::cuda::Stream stream;
|
|
|
|
cv::cuda::HostMem minMaxVals, locVals;
|
|
cv::cuda::findMinMaxLoc(loadMat(src, useRoi), minMaxVals, locVals, cv::noArray(), stream);
|
|
|
|
stream.waitForCompletion();
|
|
|
|
double vals[2];
|
|
const cv::Mat vals_mat(2, 1, CV_64FC1, &vals[0]);
|
|
minMaxVals.createMatHeader().convertTo(vals_mat, CV_64F);
|
|
|
|
int locs[2];
|
|
const cv::Mat locs_mat(2, 1, CV_32SC1, &locs[0]);
|
|
locVals.createMatHeader().copyTo(locs_mat);
|
|
|
|
cv::Point locs2D[] = {
|
|
cv::Point(locs[0] % src.cols, locs[0] / src.cols),
|
|
cv::Point(locs[1] % src.cols, locs[1] / src.cols),
|
|
};
|
|
|
|
double minVal_gold, maxVal_gold;
|
|
cv::Point minLoc_gold, maxLoc_gold;
|
|
minMaxLocGold(src, &minVal_gold, &maxVal_gold, &minLoc_gold, &maxLoc_gold);
|
|
|
|
EXPECT_DOUBLE_EQ(minVal_gold, vals[0]);
|
|
EXPECT_DOUBLE_EQ(maxVal_gold, vals[1]);
|
|
|
|
expectEqual(src, minLoc_gold, locs2D[0]);
|
|
expectEqual(src, maxLoc_gold, locs2D[1]);
|
|
}
|
|
|
|
CUDA_TEST_P(MinMaxLoc, WithMask)
|
|
{
|
|
cv::Mat src = randomMat(size, depth);
|
|
cv::Mat mask = randomMat(size, CV_8UC1, 0.0, 2.0);
|
|
|
|
if (depth == CV_64F && !supportFeature(devInfo, cv::cuda::NATIVE_DOUBLE))
|
|
{
|
|
try
|
|
{
|
|
double minVal, maxVal;
|
|
cv::Point minLoc, maxLoc;
|
|
cv::cuda::minMaxLoc(loadMat(src), &minVal, &maxVal, &minLoc, &maxLoc, loadMat(mask));
|
|
}
|
|
catch (const cv::Exception& e)
|
|
{
|
|
ASSERT_EQ(cv::Error::StsUnsupportedFormat, e.code);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
double minVal, maxVal;
|
|
cv::Point minLoc, maxLoc;
|
|
cv::cuda::minMaxLoc(loadMat(src, useRoi), &minVal, &maxVal, &minLoc, &maxLoc, loadMat(mask, useRoi));
|
|
|
|
double minVal_gold, maxVal_gold;
|
|
cv::Point minLoc_gold, maxLoc_gold;
|
|
minMaxLocGold(src, &minVal_gold, &maxVal_gold, &minLoc_gold, &maxLoc_gold, mask);
|
|
|
|
EXPECT_DOUBLE_EQ(minVal_gold, minVal);
|
|
EXPECT_DOUBLE_EQ(maxVal_gold, maxVal);
|
|
|
|
expectEqual(src, minLoc_gold, minLoc);
|
|
expectEqual(src, maxLoc_gold, maxLoc);
|
|
}
|
|
}
|
|
|
|
CUDA_TEST_P(MinMaxLoc, NullPtr)
|
|
{
|
|
cv::Mat src = randomMat(size, depth);
|
|
|
|
if (depth == CV_64F && !supportFeature(devInfo, cv::cuda::NATIVE_DOUBLE))
|
|
{
|
|
try
|
|
{
|
|
double minVal, maxVal;
|
|
cv::Point minLoc, maxLoc;
|
|
cv::cuda::minMaxLoc(loadMat(src, useRoi), &minVal, 0, 0, 0);
|
|
cv::cuda::minMaxLoc(loadMat(src, useRoi), 0, &maxVal, 0, 0);
|
|
cv::cuda::minMaxLoc(loadMat(src, useRoi), 0, 0, &minLoc, 0);
|
|
cv::cuda::minMaxLoc(loadMat(src, useRoi), 0, 0, 0, &maxLoc);
|
|
}
|
|
catch (const cv::Exception& e)
|
|
{
|
|
ASSERT_EQ(cv::Error::StsUnsupportedFormat, e.code);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
double minVal, maxVal;
|
|
cv::Point minLoc, maxLoc;
|
|
cv::cuda::minMaxLoc(loadMat(src, useRoi), &minVal, 0, 0, 0);
|
|
cv::cuda::minMaxLoc(loadMat(src, useRoi), 0, &maxVal, 0, 0);
|
|
cv::cuda::minMaxLoc(loadMat(src, useRoi), 0, 0, &minLoc, 0);
|
|
cv::cuda::minMaxLoc(loadMat(src, useRoi), 0, 0, 0, &maxLoc);
|
|
|
|
double minVal_gold, maxVal_gold;
|
|
cv::Point minLoc_gold, maxLoc_gold;
|
|
minMaxLocGold(src, &minVal_gold, &maxVal_gold, &minLoc_gold, &maxLoc_gold);
|
|
|
|
EXPECT_DOUBLE_EQ(minVal_gold, minVal);
|
|
EXPECT_DOUBLE_EQ(maxVal_gold, maxVal);
|
|
|
|
expectEqual(src, minLoc_gold, minLoc);
|
|
expectEqual(src, maxLoc_gold, maxLoc);
|
|
}
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_Arithm, MinMaxLoc, testing::Combine(
|
|
ALL_DEVICES,
|
|
DIFFERENT_SIZES,
|
|
ALL_DEPTH,
|
|
WHOLE_SUBMAT));
|
|
|
|
////////////////////////////////////////////////////////////////////////////
|
|
// CountNonZero
|
|
|
|
PARAM_TEST_CASE(CountNonZero, cv::cuda::DeviceInfo, cv::Size, MatDepth, UseRoi)
|
|
{
|
|
cv::cuda::DeviceInfo devInfo;
|
|
cv::Size size;
|
|
int depth;
|
|
bool useRoi;
|
|
|
|
cv::Mat src;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GET_PARAM(0);
|
|
size = GET_PARAM(1);
|
|
depth = GET_PARAM(2);
|
|
useRoi = GET_PARAM(3);
|
|
|
|
cv::cuda::setDevice(devInfo.deviceID());
|
|
|
|
cv::Mat srcBase = randomMat(size, CV_8U, 0.0, 1.5);
|
|
srcBase.convertTo(src, depth);
|
|
}
|
|
};
|
|
|
|
CUDA_TEST_P(CountNonZero, Accuracy)
|
|
{
|
|
if (depth == CV_64F && !supportFeature(devInfo, cv::cuda::NATIVE_DOUBLE))
|
|
{
|
|
try
|
|
{
|
|
cv::cuda::countNonZero(loadMat(src));
|
|
}
|
|
catch (const cv::Exception& e)
|
|
{
|
|
ASSERT_EQ(cv::Error::StsUnsupportedFormat, e.code);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
int val = cv::cuda::countNonZero(loadMat(src, useRoi));
|
|
|
|
int val_gold = cv::countNonZero(src);
|
|
|
|
ASSERT_EQ(val_gold, val);
|
|
}
|
|
}
|
|
|
|
CUDA_TEST_P(CountNonZero, Async)
|
|
{
|
|
cv::cuda::Stream stream;
|
|
|
|
cv::cuda::HostMem dst;
|
|
cv::cuda::countNonZero(loadMat(src, useRoi), dst, stream);
|
|
|
|
stream.waitForCompletion();
|
|
|
|
int val;
|
|
const cv::Mat val_mat(1, 1, CV_32SC1, &val);
|
|
dst.createMatHeader().copyTo(val_mat);
|
|
|
|
int val_gold = cv::countNonZero(src);
|
|
|
|
ASSERT_EQ(val_gold, val);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_Arithm, CountNonZero, testing::Combine(
|
|
ALL_DEVICES,
|
|
DIFFERENT_SIZES,
|
|
ALL_DEPTH,
|
|
WHOLE_SUBMAT));
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// Reduce
|
|
|
|
CV_ENUM(ReduceCode, cv::REDUCE_SUM, cv::REDUCE_AVG, cv::REDUCE_MAX, cv::REDUCE_MIN)
|
|
#define ALL_REDUCE_CODES testing::Values(ReduceCode(cv::REDUCE_SUM), ReduceCode(cv::REDUCE_AVG), ReduceCode(cv::REDUCE_MAX), ReduceCode(cv::REDUCE_MIN))
|
|
|
|
PARAM_TEST_CASE(Reduce, cv::cuda::DeviceInfo, cv::Size, MatDepth, Channels, ReduceCode, UseRoi)
|
|
{
|
|
cv::cuda::DeviceInfo devInfo;
|
|
cv::Size size;
|
|
int depth;
|
|
int channels;
|
|
int reduceOp;
|
|
bool useRoi;
|
|
|
|
int type;
|
|
int dst_depth;
|
|
int dst_type;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GET_PARAM(0);
|
|
size = GET_PARAM(1);
|
|
depth = GET_PARAM(2);
|
|
channels = GET_PARAM(3);
|
|
reduceOp = GET_PARAM(4);
|
|
useRoi = GET_PARAM(5);
|
|
|
|
cv::cuda::setDevice(devInfo.deviceID());
|
|
|
|
type = CV_MAKE_TYPE(depth, channels);
|
|
|
|
if (reduceOp == cv::REDUCE_MAX || reduceOp == cv::REDUCE_MIN)
|
|
dst_depth = depth;
|
|
else if (reduceOp == cv::REDUCE_SUM)
|
|
dst_depth = depth == CV_8U ? CV_32S : depth < CV_64F ? CV_32F : depth;
|
|
else
|
|
dst_depth = depth < CV_32F ? CV_32F : depth;
|
|
|
|
dst_type = CV_MAKE_TYPE(dst_depth, channels);
|
|
}
|
|
|
|
};
|
|
|
|
CUDA_TEST_P(Reduce, Rows)
|
|
{
|
|
cv::Mat src = randomMat(size, type);
|
|
|
|
cv::cuda::GpuMat dst = createMat(cv::Size(src.cols, 1), dst_type, useRoi);
|
|
cv::cuda::reduce(loadMat(src, useRoi), dst, 0, reduceOp, dst_depth);
|
|
|
|
cv::Mat dst_gold;
|
|
cv::reduce(src, dst_gold, 0, reduceOp, dst_depth);
|
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, dst_depth < CV_32F ? 0.0 : 0.02);
|
|
}
|
|
|
|
CUDA_TEST_P(Reduce, Cols)
|
|
{
|
|
cv::Mat src = randomMat(size, type);
|
|
|
|
cv::cuda::GpuMat dst;
|
|
cv::cuda::reduce(loadMat(src, useRoi), dst, 1, reduceOp, dst_depth);
|
|
|
|
cv::Mat dst_gold;
|
|
cv::reduce(src, dst_gold, 1, reduceOp, dst_depth);
|
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, dst_depth < CV_32F ? 0.0 : 0.02);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_Arithm, Reduce, testing::Combine(
|
|
ALL_DEVICES,
|
|
DIFFERENT_SIZES,
|
|
testing::Values(MatDepth(CV_8U),
|
|
MatDepth(CV_16U),
|
|
MatDepth(CV_16S),
|
|
MatDepth(CV_32F),
|
|
MatDepth(CV_64F)),
|
|
ALL_CHANNELS,
|
|
ALL_REDUCE_CODES,
|
|
WHOLE_SUBMAT));
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// Normalize
|
|
|
|
PARAM_TEST_CASE(Normalize, cv::cuda::DeviceInfo, cv::Size, MatDepth, NormCode, UseRoi)
|
|
{
|
|
cv::cuda::DeviceInfo devInfo;
|
|
cv::Size size;
|
|
int type;
|
|
int norm_type;
|
|
bool useRoi;
|
|
|
|
double alpha;
|
|
double beta;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GET_PARAM(0);
|
|
size = GET_PARAM(1);
|
|
type = GET_PARAM(2);
|
|
norm_type = GET_PARAM(3);
|
|
useRoi = GET_PARAM(4);
|
|
|
|
cv::cuda::setDevice(devInfo.deviceID());
|
|
|
|
alpha = 1;
|
|
beta = 0;
|
|
}
|
|
|
|
};
|
|
|
|
CUDA_TEST_P(Normalize, WithOutMask)
|
|
{
|
|
cv::Mat src = randomMat(size, type);
|
|
|
|
cv::cuda::GpuMat dst = createMat(size, type, useRoi);
|
|
cv::cuda::normalize(loadMat(src, useRoi), dst, alpha, beta, norm_type, type);
|
|
|
|
cv::Mat dst_gold;
|
|
cv::normalize(src, dst_gold, alpha, beta, norm_type, type);
|
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, type < CV_32F ? 1.0 : 1e-4);
|
|
}
|
|
|
|
CUDA_TEST_P(Normalize, WithMask)
|
|
{
|
|
cv::Mat src = randomMat(size, type);
|
|
cv::Mat mask = randomMat(size, CV_8UC1, 0, 2);
|
|
|
|
cv::cuda::GpuMat dst = createMat(size, type, useRoi);
|
|
dst.setTo(cv::Scalar::all(0));
|
|
cv::cuda::normalize(loadMat(src, useRoi), dst, alpha, beta, norm_type, -1, loadMat(mask, useRoi));
|
|
|
|
cv::Mat dst_gold(size, type);
|
|
dst_gold.setTo(cv::Scalar::all(0));
|
|
cv::normalize(src, dst_gold, alpha, beta, norm_type, -1, mask);
|
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, type < CV_32F ? 1.0 : 1e-4);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_Arithm, Normalize, testing::Combine(
|
|
ALL_DEVICES,
|
|
DIFFERENT_SIZES,
|
|
ALL_DEPTH,
|
|
testing::Values(NormCode(cv::NORM_L1), NormCode(cv::NORM_L2), NormCode(cv::NORM_INF), NormCode(cv::NORM_MINMAX)),
|
|
WHOLE_SUBMAT));
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// MeanStdDev
|
|
|
|
PARAM_TEST_CASE(MeanStdDev, cv::cuda::DeviceInfo, cv::Size, UseRoi)
|
|
{
|
|
cv::cuda::DeviceInfo devInfo;
|
|
cv::Size size;
|
|
bool useRoi;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GET_PARAM(0);
|
|
size = GET_PARAM(1);
|
|
useRoi = GET_PARAM(2);
|
|
|
|
cv::cuda::setDevice(devInfo.deviceID());
|
|
}
|
|
};
|
|
|
|
CUDA_TEST_P(MeanStdDev, Accuracy)
|
|
{
|
|
cv::Mat src = randomMat(size, CV_8UC1);
|
|
|
|
if (!supportFeature(devInfo, cv::cuda::FEATURE_SET_COMPUTE_13))
|
|
{
|
|
try
|
|
{
|
|
cv::Scalar mean;
|
|
cv::Scalar stddev;
|
|
cv::cuda::meanStdDev(loadMat(src, useRoi), mean, stddev);
|
|
}
|
|
catch (const cv::Exception& e)
|
|
{
|
|
ASSERT_EQ(cv::Error::StsNotImplemented, e.code);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
cv::Scalar mean;
|
|
cv::Scalar stddev;
|
|
cv::cuda::meanStdDev(loadMat(src, useRoi), mean, stddev);
|
|
|
|
cv::Scalar mean_gold;
|
|
cv::Scalar stddev_gold;
|
|
cv::meanStdDev(src, mean_gold, stddev_gold);
|
|
|
|
EXPECT_SCALAR_NEAR(mean_gold, mean, 1e-5);
|
|
EXPECT_SCALAR_NEAR(stddev_gold, stddev, 1e-5);
|
|
}
|
|
}
|
|
|
|
CUDA_TEST_P(MeanStdDev, Async)
|
|
{
|
|
cv::Mat src = randomMat(size, CV_8UC1);
|
|
|
|
cv::cuda::Stream stream;
|
|
|
|
cv::cuda::HostMem dst;
|
|
cv::cuda::meanStdDev(loadMat(src, useRoi), dst, stream);
|
|
|
|
stream.waitForCompletion();
|
|
|
|
double vals[2];
|
|
dst.createMatHeader().copyTo(cv::Mat(1, 2, CV_64FC1, &vals[0]));
|
|
|
|
cv::Scalar mean_gold;
|
|
cv::Scalar stddev_gold;
|
|
cv::meanStdDev(src, mean_gold, stddev_gold);
|
|
|
|
EXPECT_SCALAR_NEAR(mean_gold, cv::Scalar(vals[0]), 1e-5);
|
|
EXPECT_SCALAR_NEAR(stddev_gold, cv::Scalar(vals[1]), 1e-5);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_Arithm, MeanStdDev, testing::Combine(
|
|
ALL_DEVICES,
|
|
DIFFERENT_SIZES,
|
|
WHOLE_SUBMAT));
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// Integral
|
|
|
|
PARAM_TEST_CASE(Integral, cv::cuda::DeviceInfo, cv::Size, UseRoi)
|
|
{
|
|
cv::cuda::DeviceInfo devInfo;
|
|
cv::Size size;
|
|
bool useRoi;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GET_PARAM(0);
|
|
size = GET_PARAM(1);
|
|
useRoi = GET_PARAM(2);
|
|
|
|
cv::cuda::setDevice(devInfo.deviceID());
|
|
}
|
|
};
|
|
|
|
CUDA_TEST_P(Integral, Accuracy)
|
|
{
|
|
cv::Mat src = randomMat(size, CV_8UC1);
|
|
|
|
cv::cuda::GpuMat dst = createMat(cv::Size(src.cols + 1, src.rows + 1), CV_32SC1, useRoi);
|
|
cv::cuda::integral(loadMat(src, useRoi), dst);
|
|
|
|
cv::Mat dst_gold;
|
|
cv::integral(src, dst_gold, CV_32S);
|
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_Arithm, Integral, testing::Combine(
|
|
ALL_DEVICES,
|
|
testing::Values(cv::Size(128, 128), cv::Size(113, 113), cv::Size(768, 1066)),
|
|
WHOLE_SUBMAT));
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// IntegralSqr
|
|
|
|
PARAM_TEST_CASE(IntegralSqr, cv::cuda::DeviceInfo, cv::Size, UseRoi)
|
|
{
|
|
cv::cuda::DeviceInfo devInfo;
|
|
cv::Size size;
|
|
bool useRoi;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GET_PARAM(0);
|
|
size = GET_PARAM(1);
|
|
useRoi = GET_PARAM(2);
|
|
|
|
cv::cuda::setDevice(devInfo.deviceID());
|
|
}
|
|
};
|
|
|
|
CUDA_TEST_P(IntegralSqr, Accuracy)
|
|
{
|
|
cv::Mat src = randomMat(size, CV_8UC1);
|
|
|
|
cv::cuda::GpuMat dst = createMat(cv::Size(src.cols + 1, src.rows + 1), CV_64FC1, useRoi);
|
|
cv::cuda::sqrIntegral(loadMat(src, useRoi), dst);
|
|
|
|
cv::Mat dst_gold, temp;
|
|
cv::integral(src, temp, dst_gold);
|
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_Arithm, IntegralSqr, testing::Combine(
|
|
ALL_DEVICES,
|
|
DIFFERENT_SIZES,
|
|
WHOLE_SUBMAT));
|
|
|
|
#endif // HAVE_CUDA
|