opencv/doc/plastex/python-introduction.rst

114 lines
2.9 KiB
ReStructuredText

Introduction
============
Cookbook
--------
Here is a small collection of code fragments demonstrating some features
of the OpenCV Python bindings.
Convert an image from png to jpg
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
::
import cv
cv.SaveImage("foo.png", cv.LoadImage("foo.jpg"))
Compute the Laplacian
^^^^^^^^^^^^^^^^^^^^^
::
im = cv.LoadImage("foo.png", 1)
dst = cv.CreateImage(cv.GetSize(im), cv.IPL_DEPTH_16S, 3);
laplace = cv.Laplace(im, dst)
cv.SaveImage("foo-laplace.png", dst)
Using cvGoodFeaturesToTrack
^^^^^^^^^^^^^^^^^^^^^^^^^^^
::
img = cv.LoadImage("foo.jpg")
eig_image = cv.CreateImage(cv.GetSize(img), cv.IPL_DEPTH_32F, 1)
temp_image = cv.CreateImage(cv.GetSize(img), cv.IPL_DEPTH_32F, 1)
# Find up to 300 corners using Harris
for (x,y) in cv.GoodFeaturesToTrack(img, eig_image, temp_image, 300, None, 1.0, use_harris = True):
print "good feature at", x,y
Using GetSubRect
^^^^^^^^^^^^^^^^
GetSubRect returns a rectangular part of another image. It does this without copying any data.
::
img = cv.LoadImage("foo.jpg")
sub = cv.GetSubRect(img, (0, 0, 32, 32)) # sub is 32x32 patch from img top-left
cv.SetZero(sub) # clear sub to zero, which also clears 32x32 pixels in img
Using CreateMat, and accessing an element
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
::
mat = cv.CreateMat(5, 5, cv.CV_32FC1)
mat[3,2] += 0.787
ROS image message to OpenCV
^^^^^^^^^^^^^^^^^^^^^^^^^^^
See this tutorial: http://www.ros.org/wiki/cv_bridge/Tutorials/UsingCvBridgeToConvertBetweenROSImagesAndOpenCVImages
PIL Image to OpenCV
^^^^^^^^^^^^^^^^^^^
(For details on PIL see the `PIL manual <http://www.pythonware.com/library/pil/handbook/image.htm>`_).
::
import Image
import cv
pi = Image.open('foo.png') # PIL image
cv_im = cv.CreateImageHeader(pi.size, cv.IPL_DEPTH_8U, 1)
cv.SetData(cv_im, pi.tostring())
OpenCV to PIL Image
^^^^^^^^^^^^^^^^^^^
::
cv_im = cv.CreateImage((320,200), cv.IPL_DEPTH_8U, 1)
pi = Image.fromstring("L", cv.GetSize(cv_im), cv_im.tostring())
NumPy and OpenCV
^^^^^^^^^^^^^^^^
Using the `array interface <http://docs.scipy.org/doc/numpy/reference/arrays.interface.html>`_, to use an OpenCV CvMat in NumPy::
import cv
import numpy
mat = cv.CreateMat(5, 5, cv.CV_32FC1)
a = numpy.asarray(mat)
and to use a NumPy array in OpenCV::
a = numpy.ones((640, 480))
mat = cv.fromarray(a)
even easier, most OpenCV functions can work on NumPy arrays directly, for example::
picture = numpy.ones((640, 480))
cv.Smooth(picture, picture, cv.CV_GAUSSIAN, 15, 15)
Given a 2D array,
the fromarray function (or the implicit version shown above)
returns a single-channel CvMat of the same size.
For a 3D array of size :math:`j \times k \times l`, it returns a
CvMat sized :math:`j \times k` with :math:`l` channels.
Alternatively, use fromarray with the allowND option to always return a cvMatND.