mirror of
https://github.com/opencv/opencv.git
synced 2025-01-08 20:42:41 +08:00
84db4eb6fa
minor build system changes (now cuda code in opencv_core is compiled using CUDA_ARCH* cmake variables)
130 lines
4.3 KiB
C++
130 lines
4.3 KiB
C++
#include "perf_precomp.hpp"
|
|
|
|
#include "opencv2/highgui/highgui.hpp"
|
|
#include "opencv2/flann/flann.hpp"
|
|
|
|
using namespace std;
|
|
using namespace cv;
|
|
using namespace perf;
|
|
using std::tr1::make_tuple;
|
|
using std::tr1::get;
|
|
|
|
#define SURF_MATCH_CONFIDENCE 0.65f
|
|
#define ORB_MATCH_CONFIDENCE 0.3f
|
|
#define WORK_MEGAPIX 0.6
|
|
|
|
typedef TestBaseWithParam<String> stitch;
|
|
typedef TestBaseWithParam<String> match;
|
|
|
|
PERF_TEST_P(stitch, a123, testing::Values("surf", "orb"))
|
|
{
|
|
Mat pano;
|
|
|
|
vector<Mat> imgs;
|
|
imgs.push_back( imread( getDataPath("stitching/a1.jpg") ) );
|
|
imgs.push_back( imread( getDataPath("stitching/a2.jpg") ) );
|
|
imgs.push_back( imread( getDataPath("stitching/a3.jpg") ) );
|
|
|
|
Stitcher::Status status;
|
|
Ptr<detail::FeaturesFinder> featuresFinder = GetParam() == "orb"
|
|
? (detail::FeaturesFinder*)new detail::OrbFeaturesFinder()
|
|
: (detail::FeaturesFinder*)new detail::SurfFeaturesFinder();
|
|
|
|
Ptr<detail::FeaturesMatcher> featuresMatcher = GetParam() == "orb"
|
|
? new detail::BestOf2NearestMatcher(false, ORB_MATCH_CONFIDENCE)
|
|
: new detail::BestOf2NearestMatcher(false, SURF_MATCH_CONFIDENCE);
|
|
|
|
declare.time(30 * 20).iterations(20);
|
|
|
|
while(next())
|
|
{
|
|
Stitcher stitcher = Stitcher::createDefault();
|
|
stitcher.setFeaturesFinder(featuresFinder);
|
|
stitcher.setFeaturesMatcher(featuresMatcher);
|
|
stitcher.setWarper(new SphericalWarper());
|
|
stitcher.setRegistrationResol(WORK_MEGAPIX);
|
|
|
|
startTimer();
|
|
status = stitcher.stitch(imgs, pano);
|
|
stopTimer();
|
|
}
|
|
}
|
|
|
|
PERF_TEST_P(stitch, b12, testing::Values("surf", "orb"))
|
|
{
|
|
Mat pano;
|
|
|
|
vector<Mat> imgs;
|
|
imgs.push_back( imread( getDataPath("stitching/b1.jpg") ) );
|
|
imgs.push_back( imread( getDataPath("stitching/b2.jpg") ) );
|
|
|
|
Stitcher::Status status;
|
|
Ptr<detail::FeaturesFinder> featuresFinder = GetParam() == "orb"
|
|
? (detail::FeaturesFinder*)new detail::OrbFeaturesFinder()
|
|
: (detail::FeaturesFinder*)new detail::SurfFeaturesFinder();
|
|
|
|
Ptr<detail::FeaturesMatcher> featuresMatcher = GetParam() == "orb"
|
|
? new detail::BestOf2NearestMatcher(false, ORB_MATCH_CONFIDENCE)
|
|
: new detail::BestOf2NearestMatcher(false, SURF_MATCH_CONFIDENCE);
|
|
|
|
declare.time(30 * 20).iterations(20);
|
|
|
|
while(next())
|
|
{
|
|
Stitcher stitcher = Stitcher::createDefault();
|
|
stitcher.setFeaturesFinder(featuresFinder);
|
|
stitcher.setFeaturesMatcher(featuresMatcher);
|
|
stitcher.setWarper(new SphericalWarper());
|
|
stitcher.setRegistrationResol(WORK_MEGAPIX);
|
|
|
|
startTimer();
|
|
status = stitcher.stitch(imgs, pano);
|
|
stopTimer();
|
|
}
|
|
}
|
|
|
|
PERF_TEST_P( match, bestOf2Nearest, testing::Values("surf", "orb"))
|
|
{
|
|
Mat img1, img1_full = imread( getDataPath("stitching/b1.jpg") );
|
|
Mat img2, img2_full = imread( getDataPath("stitching/b2.jpg") );
|
|
float scale1 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img1_full.total()));
|
|
float scale2 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img2_full.total()));
|
|
resize(img1_full, img1, Size(), scale1, scale1);
|
|
resize(img2_full, img2, Size(), scale2, scale2);
|
|
|
|
Ptr<detail::FeaturesFinder> finder;
|
|
Ptr<detail::FeaturesMatcher> matcher;
|
|
if (GetParam() == "surf")
|
|
{
|
|
finder = new detail::SurfFeaturesFinder();
|
|
matcher = new detail::BestOf2NearestMatcher(false, SURF_MATCH_CONFIDENCE);
|
|
}
|
|
else if (GetParam() == "orb")
|
|
{
|
|
finder = new detail::OrbFeaturesFinder();
|
|
matcher = new detail::BestOf2NearestMatcher(false, ORB_MATCH_CONFIDENCE);
|
|
}
|
|
else
|
|
{
|
|
FAIL() << "Unknown 2D features type: " << GetParam();
|
|
}
|
|
|
|
detail::ImageFeatures features1, features2;
|
|
(*finder)(img1, features1);
|
|
(*finder)(img2, features2);
|
|
|
|
detail::MatchesInfo pairwise_matches;
|
|
|
|
declare.in(features1.descriptors, features2.descriptors)
|
|
.iterations(100);
|
|
|
|
while(next())
|
|
{
|
|
cvflann::seed_random(42);//for predictive FlannBasedMatcher
|
|
startTimer();
|
|
(*matcher)(features1, features2, pairwise_matches);
|
|
stopTimer();
|
|
matcher->collectGarbage();
|
|
}
|
|
}
|