opencv/modules/dnn/test/test_common.impl.hpp
Hanxi Guo 1fcf7ba5bc
Merge pull request #20406 from MarkGHX:gsoc_2021_webnn
[GSoC] OpenCV.js: Accelerate OpenCV.js DNN via WebNN

* Add WebNN backend for OpenCV DNN Module

Update dnn.cpp

Update dnn.cpp

Update dnn.cpp

Update dnn.cpp

Add WebNN head files into OpenCV 3rd partiy files

Create webnn.hpp

update cmake

Complete README and add OpenCVDetectWebNN.cmake file

add webnn.cpp

Modify webnn.cpp

Can successfully compile the codes for creating a MLContext

Update webnn.cpp

Update README.md

Update README.md

Update README.md

Update README.md

Update cmake files and

update README.md

Update OpenCVDetectWebNN.cmake and README.md

Update OpenCVDetectWebNN.cmake

Fix OpenCVDetectWebNN.cmake and update README.md

Add source webnn_cpp.cpp and libary libwebnn_proc.so

Update dnn.cpp

Update dnn.cpp

Update dnn.cpp

Update dnn.cpp

update dnn.cpp

update op_webnn

update op_webnn

Update op_webnn.hpp

update op_webnn.cpp & hpp

Update op_webnn.hpp

Update op_webnn

update the skeleton

Update op_webnn.cpp

Update op_webnn

Update op_webnn.cpp

Update op_webnn.cpp

Update op_webnn.hpp

update op_webnn

update op_webnn

Solved the problems of released variables.

Fixed the bugs in op_webnn.cpp

Implement op_webnn

Implement Relu by WebNN API

Update dnn.cpp for better test

Update elementwise_layers.cpp

Implement ReLU6

Update elementwise_layers.cpp

Implement SoftMax using WebNN API

Implement Reshape by WebNN API

Implement PermuteLayer by WebNN API

Implement PoolingLayer using WebNN API

Update pooling_layer.cpp

Update pooling_layer.cpp

Update pooling_layer.cpp

Update pooling_layer.cpp

Update pooling_layer.cpp

Update pooling_layer.cpp

Implement poolingLayer by WebNN API and add more detailed logs

Update dnn.cpp

Update dnn.cpp

Remove redundant codes and add more logs for poolingLayer

Add more logs in the pooling layer implementation

Fix the indent issue and resolve the compiling issue

Fix the build problems

Fix the build issue

FIx the build issue

Update dnn.cpp

Update dnn.cpp

* Fix the build issue

* Implement BatchNorm Layer by WebNN API

* Update convolution_layer.cpp

This is a temporary file for Conv2d layer implementation

* Integrate some general functions into op_webnn.cpp&hpp

* Update const_layer.cpp

* Update convolution_layer.cpp

Still have some bugs that should be fixed.

* Update conv2d layer and fc layer

still have some problems to be fixed.

* update constLayer, conv layer, fc layer

There are still some bugs to be fixed.

* Fix the build issue

* Update concat_layer.cpp

Still have some bugs to be fixed.

* Update conv2d layer, fully connected layer and const layer

* Update convolution_layer.cpp

* Add OpenCV.js DNN module WebNN Backend (both using webnn-polyfill and electron)

* Delete bib19450.aux

* Add WebNN backend for OpenCV DNN Module

Update dnn.cpp

Update dnn.cpp

Update dnn.cpp

Update dnn.cpp

Add WebNN head files into OpenCV 3rd partiy files

Create webnn.hpp

update cmake

Complete README and add OpenCVDetectWebNN.cmake file

add webnn.cpp

Modify webnn.cpp

Can successfully compile the codes for creating a MLContext

Update webnn.cpp

Update README.md

Update README.md

Update README.md

Update README.md

Update cmake files and

update README.md

Update OpenCVDetectWebNN.cmake and README.md

Update OpenCVDetectWebNN.cmake

Fix OpenCVDetectWebNN.cmake and update README.md

Add source webnn_cpp.cpp and libary libwebnn_proc.so

Update dnn.cpp

Update dnn.cpp

Update dnn.cpp

Update dnn.cpp

update dnn.cpp

update op_webnn

update op_webnn

Update op_webnn.hpp

update op_webnn.cpp & hpp

Update op_webnn.hpp

Update op_webnn

update the skeleton

Update op_webnn.cpp

Update op_webnn

Update op_webnn.cpp

Update op_webnn.cpp

Update op_webnn.hpp

update op_webnn

update op_webnn

Solved the problems of released variables.

Fixed the bugs in op_webnn.cpp

Implement op_webnn

Implement Relu by WebNN API

Update dnn.cpp for better test

Update elementwise_layers.cpp

Implement ReLU6

Update elementwise_layers.cpp

Implement SoftMax using WebNN API

Implement Reshape by WebNN API

Implement PermuteLayer by WebNN API

Implement PoolingLayer using WebNN API

Update pooling_layer.cpp

Update pooling_layer.cpp

Update pooling_layer.cpp

Update pooling_layer.cpp

Update pooling_layer.cpp

Update pooling_layer.cpp

Implement poolingLayer by WebNN API and add more detailed logs

Update dnn.cpp

Update dnn.cpp

Remove redundant codes and add more logs for poolingLayer

Add more logs in the pooling layer implementation

Fix the indent issue and resolve the compiling issue

Fix the build problems

Fix the build issue

FIx the build issue

Update dnn.cpp

Update dnn.cpp

* Fix the build issue

* Implement BatchNorm Layer by WebNN API

* Update convolution_layer.cpp

This is a temporary file for Conv2d layer implementation

* Integrate some general functions into op_webnn.cpp&hpp

* Update const_layer.cpp

* Update convolution_layer.cpp

Still have some bugs that should be fixed.

* Update conv2d layer and fc layer

still have some problems to be fixed.

* update constLayer, conv layer, fc layer

There are still some bugs to be fixed.

* Update conv2d layer, fully connected layer and const layer

* Update convolution_layer.cpp

* Add OpenCV.js DNN module WebNN Backend (both using webnn-polyfill and electron)

* Update dnn.cpp

* Fix Error in dnn.cpp

* Resolve duplication in conditions in convolution_layer.cpp

* Fixed the issues in the comments

* Fix building issue

* Update tutorial

* Fixed comments

* Address the comments

* Update CMakeLists.txt

* Offer more accurate perf test on native

* Add better perf tests for both native and web

* Modify per tests for better results

* Use more latest version of Electron

* Support latest WebNN Clamp op

* Add definition of HAVE_WEBNN macro

* Support group convolution

* Implement Scale_layer using WebNN

* Add Softmax option for native classification example

* Fix comments

* Fix comments
2021-11-23 21:15:31 +00:00

490 lines
16 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Used in accuracy and perf tests as a content of .cpp file
// Note: don't use "precomp.hpp" here
#include "opencv2/ts.hpp"
#include "opencv2/ts/ts_perf.hpp"
#include "opencv2/core/utility.hpp"
#include "opencv2/core/ocl.hpp"
#include "opencv2/dnn.hpp"
#include "test_common.hpp"
#include <opencv2/core/utils/configuration.private.hpp>
#include <opencv2/core/utils/logger.hpp>
namespace cv { namespace dnn {
CV__DNN_INLINE_NS_BEGIN
void PrintTo(const cv::dnn::Backend& v, std::ostream* os)
{
switch (v) {
case DNN_BACKEND_DEFAULT: *os << "DEFAULT"; return;
case DNN_BACKEND_HALIDE: *os << "HALIDE"; return;
case DNN_BACKEND_INFERENCE_ENGINE: *os << "DLIE*"; return;
case DNN_BACKEND_VKCOM: *os << "VKCOM"; return;
case DNN_BACKEND_OPENCV: *os << "OCV"; return;
case DNN_BACKEND_CUDA: *os << "CUDA"; return;
case DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019: *os << "DLIE"; return;
case DNN_BACKEND_INFERENCE_ENGINE_NGRAPH: *os << "NGRAPH"; return;
case DNN_BACKEND_WEBNN: *os << "WEBNN"; return;
} // don't use "default:" to emit compiler warnings
*os << "DNN_BACKEND_UNKNOWN(" << (int)v << ")";
}
void PrintTo(const cv::dnn::Target& v, std::ostream* os)
{
switch (v) {
case DNN_TARGET_CPU: *os << "CPU"; return;
case DNN_TARGET_OPENCL: *os << "OCL"; return;
case DNN_TARGET_OPENCL_FP16: *os << "OCL_FP16"; return;
case DNN_TARGET_MYRIAD: *os << "MYRIAD"; return;
case DNN_TARGET_HDDL: *os << "HDDL"; return;
case DNN_TARGET_VULKAN: *os << "VULKAN"; return;
case DNN_TARGET_FPGA: *os << "FPGA"; return;
case DNN_TARGET_CUDA: *os << "CUDA"; return;
case DNN_TARGET_CUDA_FP16: *os << "CUDA_FP16"; return;
} // don't use "default:" to emit compiler warnings
*os << "DNN_TARGET_UNKNOWN(" << (int)v << ")";
}
void PrintTo(const tuple<cv::dnn::Backend, cv::dnn::Target> v, std::ostream* os)
{
PrintTo(get<0>(v), os);
*os << "/";
PrintTo(get<1>(v), os);
}
CV__DNN_INLINE_NS_END
}} // namespace
namespace opencv_test {
void normAssert(
cv::InputArray ref, cv::InputArray test, const char *comment /*= ""*/,
double l1 /*= 0.00001*/, double lInf /*= 0.0001*/)
{
double normL1 = cvtest::norm(ref, test, cv::NORM_L1) / ref.getMat().total();
EXPECT_LE(normL1, l1) << comment << " |ref| = " << cvtest::norm(ref, cv::NORM_INF);
double normInf = cvtest::norm(ref, test, cv::NORM_INF);
EXPECT_LE(normInf, lInf) << comment << " |ref| = " << cvtest::norm(ref, cv::NORM_INF);
}
std::vector<cv::Rect2d> matToBoxes(const cv::Mat& m)
{
EXPECT_EQ(m.type(), CV_32FC1);
EXPECT_EQ(m.dims, 2);
EXPECT_EQ(m.cols, 4);
std::vector<cv::Rect2d> boxes(m.rows);
for (int i = 0; i < m.rows; ++i)
{
CV_Assert(m.row(i).isContinuous());
const float* data = m.ptr<float>(i);
double l = data[0], t = data[1], r = data[2], b = data[3];
boxes[i] = cv::Rect2d(l, t, r - l, b - t);
}
return boxes;
}
void normAssertDetections(
const std::vector<int>& refClassIds,
const std::vector<float>& refScores,
const std::vector<cv::Rect2d>& refBoxes,
const std::vector<int>& testClassIds,
const std::vector<float>& testScores,
const std::vector<cv::Rect2d>& testBoxes,
const char *comment /*= ""*/, double confThreshold /*= 0.0*/,
double scores_diff /*= 1e-5*/, double boxes_iou_diff /*= 1e-4*/)
{
ASSERT_FALSE(testClassIds.empty()) << "No detections";
std::vector<bool> matchedRefBoxes(refBoxes.size(), false);
std::vector<double> refBoxesIoUDiff(refBoxes.size(), 1.0);
for (int i = 0; i < testBoxes.size(); ++i)
{
//cout << "Test[i=" << i << "]: score=" << testScores[i] << " id=" << testClassIds[i] << " box " << testBoxes[i] << endl;
double testScore = testScores[i];
if (testScore < confThreshold)
continue;
int testClassId = testClassIds[i];
const cv::Rect2d& testBox = testBoxes[i];
bool matched = false;
double topIoU = 0;
for (int j = 0; j < refBoxes.size() && !matched; ++j)
{
if (!matchedRefBoxes[j] && testClassId == refClassIds[j] &&
std::abs(testScore - refScores[j]) < scores_diff)
{
double interArea = (testBox & refBoxes[j]).area();
double iou = interArea / (testBox.area() + refBoxes[j].area() - interArea);
topIoU = std::max(topIoU, iou);
refBoxesIoUDiff[j] = std::min(refBoxesIoUDiff[j], 1.0f - iou);
if (1.0 - iou < boxes_iou_diff)
{
matched = true;
matchedRefBoxes[j] = true;
}
}
}
if (!matched)
{
std::cout << cv::format("Unmatched prediction: class %d score %f box ",
testClassId, testScore) << testBox << std::endl;
std::cout << "Highest IoU: " << topIoU << std::endl;
}
EXPECT_TRUE(matched) << comment;
}
// Check unmatched reference detections.
for (int i = 0; i < refBoxes.size(); ++i)
{
if (!matchedRefBoxes[i] && refScores[i] > confThreshold)
{
std::cout << cv::format("Unmatched reference: class %d score %f box ",
refClassIds[i], refScores[i]) << refBoxes[i]
<< " IoU diff: " << refBoxesIoUDiff[i]
<< std::endl;
EXPECT_LE(refScores[i], confThreshold) << comment;
}
}
}
// For SSD-based object detection networks which produce output of shape 1x1xNx7
// where N is a number of detections and an every detection is represented by
// a vector [batchId, classId, confidence, left, top, right, bottom].
void normAssertDetections(
cv::Mat ref, cv::Mat out, const char *comment /*= ""*/,
double confThreshold /*= 0.0*/, double scores_diff /*= 1e-5*/,
double boxes_iou_diff /*= 1e-4*/)
{
CV_Assert(ref.total() % 7 == 0);
CV_Assert(out.total() % 7 == 0);
ref = ref.reshape(1, ref.total() / 7);
out = out.reshape(1, out.total() / 7);
cv::Mat refClassIds, testClassIds;
ref.col(1).convertTo(refClassIds, CV_32SC1);
out.col(1).convertTo(testClassIds, CV_32SC1);
std::vector<float> refScores(ref.col(2)), testScores(out.col(2));
std::vector<cv::Rect2d> refBoxes = matToBoxes(ref.colRange(3, 7));
std::vector<cv::Rect2d> testBoxes = matToBoxes(out.colRange(3, 7));
normAssertDetections(refClassIds, refScores, refBoxes, testClassIds, testScores,
testBoxes, comment, confThreshold, scores_diff, boxes_iou_diff);
}
// For text detection networks
// Curved text polygon is not supported in the current version.
// (concave polygon is invalid input to intersectConvexConvex)
void normAssertTextDetections(
const std::vector<std::vector<Point>>& gtPolys,
const std::vector<std::vector<Point>>& testPolys,
const char *comment /*= ""*/, double boxes_iou_diff /*= 1e-4*/)
{
std::vector<bool> matchedRefBoxes(gtPolys.size(), false);
for (uint i = 0; i < testPolys.size(); ++i)
{
const std::vector<Point>& testPoly = testPolys[i];
bool matched = false;
double topIoU = 0;
for (uint j = 0; j < gtPolys.size() && !matched; ++j)
{
if (!matchedRefBoxes[j])
{
std::vector<Point> intersectionPolygon;
float intersectArea = intersectConvexConvex(testPoly, gtPolys[j], intersectionPolygon, true);
double iou = intersectArea / (contourArea(testPoly) + contourArea(gtPolys[j]) - intersectArea);
topIoU = std::max(topIoU, iou);
if (1.0 - iou < boxes_iou_diff)
{
matched = true;
matchedRefBoxes[j] = true;
}
}
}
if (!matched) {
std::cout << cv::format("Unmatched-det:") << testPoly << std::endl;
std::cout << "Highest IoU: " << topIoU << std::endl;
}
EXPECT_TRUE(matched) << comment;
}
// Check unmatched groundtruth.
for (uint i = 0; i < gtPolys.size(); ++i)
{
if (!matchedRefBoxes[i]) {
std::cout << cv::format("Unmatched-gt:") << gtPolys[i] << std::endl;
}
EXPECT_TRUE(matchedRefBoxes[i]);
}
}
void readFileContent(const std::string& filename, CV_OUT std::vector<char>& content)
{
const std::ios::openmode mode = std::ios::in | std::ios::binary;
std::ifstream ifs(filename.c_str(), mode);
ASSERT_TRUE(ifs.is_open());
content.clear();
ifs.seekg(0, std::ios::end);
const size_t sz = ifs.tellg();
content.resize(sz);
ifs.seekg(0, std::ios::beg);
ifs.read((char*)content.data(), sz);
ASSERT_FALSE(ifs.fail());
}
testing::internal::ParamGenerator< tuple<Backend, Target> > dnnBackendsAndTargets(
bool withInferenceEngine /*= true*/,
bool withHalide /*= false*/,
bool withCpuOCV /*= true*/,
bool withVkCom /*= true*/,
bool withCUDA /*= true*/,
bool withNgraph /*= true*/,
bool withWebnn /*= false*/
)
{
#ifdef HAVE_INF_ENGINE
bool withVPU = validateVPUType();
#endif
std::vector< tuple<Backend, Target> > targets;
std::vector< Target > available;
if (withHalide)
{
available = getAvailableTargets(DNN_BACKEND_HALIDE);
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
targets.push_back(make_tuple(DNN_BACKEND_HALIDE, *i));
}
#ifdef HAVE_INF_ENGINE
if (withInferenceEngine)
{
available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019);
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
{
if ((*i == DNN_TARGET_MYRIAD || *i == DNN_TARGET_HDDL) && !withVPU)
continue;
targets.push_back(make_tuple(DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019, *i));
}
}
if (withNgraph)
{
available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH);
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
{
if ((*i == DNN_TARGET_MYRIAD || *i == DNN_TARGET_HDDL) && !withVPU)
continue;
targets.push_back(make_tuple(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, *i));
}
}
#else
CV_UNUSED(withInferenceEngine);
#endif
if (withVkCom)
{
available = getAvailableTargets(DNN_BACKEND_VKCOM);
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
targets.push_back(make_tuple(DNN_BACKEND_VKCOM, *i));
}
#ifdef HAVE_CUDA
if(withCUDA)
{
for (auto target : getAvailableTargets(DNN_BACKEND_CUDA))
targets.push_back(make_tuple(DNN_BACKEND_CUDA, target));
}
#endif
#ifdef HAVE_WEBNN
if (withWebnn)
{
for (auto target : getAvailableTargets(DNN_BACKEND_WEBNN)) {
targets.push_back(make_tuple(DNN_BACKEND_WEBNN, target));
}
}
#else
CV_UNUSED(withWebnn);
#endif
{
available = getAvailableTargets(DNN_BACKEND_OPENCV);
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
{
if (!withCpuOCV && *i == DNN_TARGET_CPU)
continue;
targets.push_back(make_tuple(DNN_BACKEND_OPENCV, *i));
}
}
if (targets.empty()) // validate at least CPU mode
targets.push_back(make_tuple(DNN_BACKEND_OPENCV, DNN_TARGET_CPU));
return testing::ValuesIn(targets);
}
testing::internal::ParamGenerator< tuple<Backend, Target> > dnnBackendsAndTargetsIE()
{
#ifdef HAVE_INF_ENGINE
bool withVPU = validateVPUType();
std::vector< tuple<Backend, Target> > targets;
std::vector< Target > available;
{
available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019);
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
{
if ((*i == DNN_TARGET_MYRIAD || *i == DNN_TARGET_HDDL) && !withVPU)
continue;
targets.push_back(make_tuple(DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019, *i));
}
}
{
available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH);
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
{
if ((*i == DNN_TARGET_MYRIAD || *i == DNN_TARGET_HDDL) && !withVPU)
continue;
targets.push_back(make_tuple(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, *i));
}
}
return testing::ValuesIn(targets);
#else
return testing::ValuesIn(std::vector< tuple<Backend, Target> >());
#endif
}
#ifdef HAVE_INF_ENGINE
static std::string getTestInferenceEngineVPUType()
{
static std::string param_vpu_type = utils::getConfigurationParameterString("OPENCV_TEST_DNN_IE_VPU_TYPE", "");
return param_vpu_type;
}
static bool validateVPUType_()
{
std::string test_vpu_type = getTestInferenceEngineVPUType();
if (test_vpu_type == "DISABLED" || test_vpu_type == "disabled")
{
return false;
}
std::vector<Target> available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE);
bool have_vpu_target = false;
for (std::vector<Target>::const_iterator i = available.begin(); i != available.end(); ++i)
{
if (*i == DNN_TARGET_MYRIAD || *i == DNN_TARGET_HDDL)
{
have_vpu_target = true;
break;
}
}
if (test_vpu_type.empty())
{
if (have_vpu_target)
{
CV_LOG_INFO(NULL, "OpenCV-DNN-Test: VPU type for testing is not specified via 'OPENCV_TEST_DNN_IE_VPU_TYPE' parameter.")
}
}
else
{
if (!have_vpu_target)
{
CV_LOG_FATAL(NULL, "OpenCV-DNN-Test: 'OPENCV_TEST_DNN_IE_VPU_TYPE' parameter requires VPU of type = '" << test_vpu_type << "', but VPU is not detected. STOP.");
exit(1);
}
std::string dnn_vpu_type = getInferenceEngineVPUType();
if (dnn_vpu_type != test_vpu_type)
{
CV_LOG_FATAL(NULL, "OpenCV-DNN-Test: 'testing' and 'detected' VPU types mismatch: '" << test_vpu_type << "' vs '" << dnn_vpu_type << "'. STOP.");
exit(1);
}
}
if (have_vpu_target)
{
std::string dnn_vpu_type = getInferenceEngineVPUType();
if (dnn_vpu_type == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_2)
registerGlobalSkipTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2);
if (dnn_vpu_type == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
registerGlobalSkipTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);
}
return true;
}
bool validateVPUType()
{
static bool result = validateVPUType_();
return result;
}
#endif // HAVE_INF_ENGINE
void initDNNTests()
{
const char* extraTestDataPath =
#ifdef WINRT
NULL;
#else
getenv("OPENCV_DNN_TEST_DATA_PATH");
#endif
if (extraTestDataPath)
cvtest::addDataSearchPath(extraTestDataPath);
registerGlobalSkipTag(
CV_TEST_TAG_DNN_SKIP_HALIDE,
CV_TEST_TAG_DNN_SKIP_OPENCL, CV_TEST_TAG_DNN_SKIP_OPENCL_FP16
);
#if defined(INF_ENGINE_RELEASE)
registerGlobalSkipTag(
CV_TEST_TAG_DNN_SKIP_IE,
#if INF_ENGINE_VER_MAJOR_EQ(2018050000)
CV_TEST_TAG_DNN_SKIP_IE_2018R5,
#elif INF_ENGINE_VER_MAJOR_EQ(2019010000)
CV_TEST_TAG_DNN_SKIP_IE_2019R1,
# if INF_ENGINE_RELEASE == 2019010100
CV_TEST_TAG_DNN_SKIP_IE_2019R1_1,
# endif
#elif INF_ENGINE_VER_MAJOR_EQ(2019020000)
CV_TEST_TAG_DNN_SKIP_IE_2019R2,
#elif INF_ENGINE_VER_MAJOR_EQ(2019030000)
CV_TEST_TAG_DNN_SKIP_IE_2019R3,
#endif
#ifdef HAVE_DNN_NGRAPH
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH,
#endif
#ifdef HAVE_DNN_IE_NN_BUILDER_2019
CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER,
#endif
CV_TEST_TAG_DNN_SKIP_IE_CPU
);
registerGlobalSkipTag(
// see validateVPUType(): CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2, CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X
CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16
);
#endif
#ifdef HAVE_VULKAN
registerGlobalSkipTag(
CV_TEST_TAG_DNN_SKIP_VULKAN
);
#endif
#ifdef HAVE_CUDA
registerGlobalSkipTag(
CV_TEST_TAG_DNN_SKIP_CUDA, CV_TEST_TAG_DNN_SKIP_CUDA_FP32, CV_TEST_TAG_DNN_SKIP_CUDA_FP16
);
#endif
}
} // namespace