mirror of
https://github.com/opencv/opencv.git
synced 2024-12-15 09:49:13 +08:00
83d70b0f36
Using cv2 dnn interface to run yolov8 model #24396 This is a sample code for using opencv dnn interface to run ultralytics yolov8 model for object detection. ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [X] I agree to contribute to the project under Apache 2 License. - [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [X] The PR is proposed to the proper branch - [] There is a reference to the original bug report and related work - [] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [] The feature is well documented and sample code can be built with the project CMake
117 lines
5.1 KiB
Python
117 lines
5.1 KiB
Python
import sys
|
|
import os
|
|
import cv2 as cv
|
|
|
|
|
|
def add_argument(zoo, parser, name, help, required=False, default=None, type=None, action=None, nargs=None):
|
|
if len(sys.argv) <= 1:
|
|
return
|
|
|
|
modelName = sys.argv[1]
|
|
|
|
if os.path.isfile(zoo):
|
|
fs = cv.FileStorage(zoo, cv.FILE_STORAGE_READ)
|
|
node = fs.getNode(modelName)
|
|
if not node.empty():
|
|
value = node.getNode(name)
|
|
if not value.empty():
|
|
if value.isReal():
|
|
default = value.real()
|
|
elif value.isString():
|
|
default = value.string()
|
|
elif value.isInt():
|
|
default = int(value.real())
|
|
elif value.isSeq():
|
|
default = []
|
|
for i in range(value.size()):
|
|
v = value.at(i)
|
|
if v.isInt():
|
|
default.append(int(v.real()))
|
|
elif v.isReal():
|
|
default.append(v.real())
|
|
else:
|
|
print('Unexpected value format')
|
|
exit(0)
|
|
else:
|
|
print('Unexpected field format')
|
|
exit(0)
|
|
required = False
|
|
|
|
if action == 'store_true':
|
|
default = 1 if default == 'true' else (0 if default == 'false' else default)
|
|
assert(default is None or default == 0 or default == 1)
|
|
parser.add_argument('--' + name, required=required, help=help, default=bool(default),
|
|
action=action)
|
|
else:
|
|
parser.add_argument('--' + name, required=required, help=help, default=default,
|
|
action=action, nargs=nargs, type=type)
|
|
|
|
|
|
def add_preproc_args(zoo, parser, sample):
|
|
aliases = []
|
|
if os.path.isfile(zoo):
|
|
fs = cv.FileStorage(zoo, cv.FILE_STORAGE_READ)
|
|
root = fs.root()
|
|
for name in root.keys():
|
|
model = root.getNode(name)
|
|
if model.getNode('sample').string() == sample:
|
|
aliases.append(name)
|
|
|
|
parser.add_argument('alias', nargs='?', choices=aliases,
|
|
help='An alias name of model to extract preprocessing parameters from models.yml file.')
|
|
add_argument(zoo, parser, 'model', required=True,
|
|
help='Path to a binary file of model contains trained weights. '
|
|
'It could be a file with extensions .caffemodel (Caffe), '
|
|
'.pb (TensorFlow), .t7 or .net (Torch), .weights (Darknet), .bin (OpenVINO)')
|
|
add_argument(zoo, parser, 'config',
|
|
help='Path to a text file of model contains network configuration. '
|
|
'It could be a file with extensions .prototxt (Caffe), .pbtxt or .config (TensorFlow), .cfg (Darknet), .xml (OpenVINO)')
|
|
add_argument(zoo, parser, 'mean', nargs='+', type=float, default=[0, 0, 0],
|
|
help='Preprocess input image by subtracting mean values. '
|
|
'Mean values should be in BGR order.')
|
|
add_argument(zoo, parser, 'scale', type=float, default=1.0,
|
|
help='Preprocess input image by multiplying on a scale factor.')
|
|
add_argument(zoo, parser, 'width', type=int,
|
|
help='Preprocess input image by resizing to a specific width.')
|
|
add_argument(zoo, parser, 'height', type=int,
|
|
help='Preprocess input image by resizing to a specific height.')
|
|
add_argument(zoo, parser, 'rgb', action='store_true',
|
|
help='Indicate that model works with RGB input images instead BGR ones.')
|
|
add_argument(zoo, parser, 'classes',
|
|
help='Optional path to a text file with names of classes to label detected objects.')
|
|
add_argument(zoo, parser, 'postprocessing', type=str,
|
|
help='Post-processing kind depends on model topology.')
|
|
add_argument(zoo, parser, 'background_label_id', type=int, default=-1,
|
|
help='An index of background class in predictions. If not negative, exclude such class from list of classes.')
|
|
|
|
|
|
def findFile(filename):
|
|
if filename:
|
|
if os.path.exists(filename):
|
|
return filename
|
|
|
|
fpath = cv.samples.findFile(filename, False)
|
|
if fpath:
|
|
return fpath
|
|
|
|
samplesDataDir = os.path.join(os.path.dirname(os.path.abspath(__file__)),
|
|
'..',
|
|
'data',
|
|
'dnn')
|
|
if os.path.exists(os.path.join(samplesDataDir, filename)):
|
|
return os.path.join(samplesDataDir, filename)
|
|
|
|
for path in ['OPENCV_DNN_TEST_DATA_PATH', 'OPENCV_TEST_DATA_PATH']:
|
|
try:
|
|
extraPath = os.environ[path]
|
|
absPath = os.path.join(extraPath, 'dnn', filename)
|
|
if os.path.exists(absPath):
|
|
return absPath
|
|
except KeyError:
|
|
pass
|
|
|
|
print('File ' + filename + ' not found! Please specify a path to '
|
|
'/opencv_extra/testdata in OPENCV_DNN_TEST_DATA_PATH environment '
|
|
'variable or pass a full path to model.')
|
|
exit(0)
|