opencv/modules/gapi/include/opencv2/gapi/rmat.hpp
Trutnev Aleksei 17234f82d0
Merge pull request #20836 from alexgiving:atrutnev/rename_Adapter_to_IAdapter
* Rename RMat::Adapter to RMat::IAdapter

* Add comments
2021-11-01 12:43:27 +00:00

161 lines
6.1 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2020 Intel Corporation
#ifndef OPENCV_GAPI_RMAT_HPP
#define OPENCV_GAPI_RMAT_HPP
#include <opencv2/gapi/gmat.hpp>
#include <opencv2/gapi/own/exports.hpp>
// Forward declaration
namespace cv {
namespace gapi {
namespace s11n {
struct IOStream;
struct IIStream;
} // namespace s11n
} // namespace gapi
} // namespace cv
namespace cv {
// "Remote Mat", a general class which provides an abstraction layer over the data
// storage and placement (host, remote device etc) and allows to access this data.
//
// The device specific implementation is hidden in the RMat::IAdapter class
//
// The basic flow is the following:
// * Backend which is aware of the remote device:
// - Implements own AdapterT class which is derived from RMat::IAdapter
// - Wraps device memory into RMat via make_rmat utility function:
// cv::RMat rmat = cv::make_rmat<AdapterT>(args);
//
// * End user:
// - Writes the code which works with RMats without any knowledge of the remote device:
// void func(const cv::RMat& in_rmat, cv::RMat& out_rmat) {
// // Fetch input data from the device, get mapped memory for output
// cv::RMat::View in_view = in_rmat.access(Access::R);
// cv::RMat::View out_view = out_rmat.access(Access::W);
// performCalculations(in_view, out_view);
// // data from out_view is transferred to the device when out_view is destroyed
// }
/** \addtogroup gapi_data_structures
* @{
*/
class GAPI_EXPORTS RMat
{
public:
// A lightweight wrapper on image data:
// - Doesn't own the memory;
// - Doesn't implement copy semantics (it's assumed that a view is created each time
// wrapped data is being accessed);
// - Has an optional callback which is called when the view is destroyed.
class GAPI_EXPORTS View
{
public:
using DestroyCallback = std::function<void()>;
using stepsT = std::vector<size_t>;
View() = default;
View(const GMatDesc& desc, uchar* data, const stepsT& steps = {}, DestroyCallback&& cb = nullptr);
View(const GMatDesc& desc, uchar* data, size_t step, DestroyCallback&& cb = nullptr);
View(const View&) = delete;
View& operator=(const View&) = delete;
View(View&&) = default;
View& operator=(View&& v);
~View() { if (m_cb) m_cb(); }
cv::Size size() const { return m_desc.size; }
const std::vector<int>& dims() const { return m_desc.dims; }
int cols() const { return m_desc.size.width; }
int rows() const { return m_desc.size.height; }
int type() const;
int depth() const { return m_desc.depth; }
int chan() const { return m_desc.chan; }
size_t elemSize() const { return CV_ELEM_SIZE(type()); }
template<typename T = uchar> T* ptr(int y = 0) {
return reinterpret_cast<T*>(m_data + step()*y);
}
template<typename T = uchar> const T* ptr(int y = 0) const {
return reinterpret_cast<T*>(m_data + step()*y);
}
template<typename T = uchar> T* ptr(int y, int x) {
return reinterpret_cast<T*>(m_data + step()*y + step(1)*x);
}
template<typename T = uchar> const T* ptr(int y, int x) const {
return reinterpret_cast<const T*>(m_data + step()*y + step(1)*x);
}
size_t step(size_t i = 0) const { GAPI_DbgAssert(i<m_steps.size()); return m_steps[i]; }
const stepsT& steps() const { return m_steps; }
private:
GMatDesc m_desc;
uchar* m_data = nullptr;
stepsT m_steps = {0u};
DestroyCallback m_cb = nullptr;
};
enum class Access { R, W };
class IAdapter
// Adapter class is going to be deleted and renamed as IAdapter
{
public:
virtual ~IAdapter() = default;
virtual GMatDesc desc() const = 0;
// Implementation is responsible for setting the appropriate callback to
// the view when accessed for writing, to ensure that the data from the view
// is transferred to the device when the view is destroyed
virtual View access(Access) = 0;
virtual void serialize(cv::gapi::s11n::IOStream&) {
GAPI_Assert(false && "Generic serialize method of RMat::IAdapter does nothing by default. "
"Please, implement it in derived class to properly serialize the object.");
}
virtual void deserialize(cv::gapi::s11n::IIStream&) {
GAPI_Assert(false && "Generic deserialize method of RMat::IAdapter does nothing by default. "
"Please, implement it in derived class to properly deserialize the object.");
}
};
using Adapter = IAdapter; // Keep backward compatibility
using AdapterP = std::shared_ptr<IAdapter>;
RMat() = default;
RMat(AdapterP&& a) : m_adapter(std::move(a)) {}
GMatDesc desc() const { return m_adapter->desc(); }
// Note: When accessed for write there is no guarantee that returned view
// will contain actual snapshot of the mapped device memory
// (no guarantee that fetch from a device is performed). The only
// guaranty is that when the view is destroyed, its data will be
// transferred to the device
View access(Access a) const { return m_adapter->access(a); }
// Cast underlying RMat adapter to the particular adapter type,
// return nullptr if underlying type is different
template<typename T> T* get() const
{
static_assert(std::is_base_of<IAdapter, T>::value, "T is not derived from IAdapter!");
GAPI_Assert(m_adapter != nullptr);
return dynamic_cast<T*>(m_adapter.get());
}
void serialize(cv::gapi::s11n::IOStream& os) const {
m_adapter->serialize(os);
}
private:
AdapterP m_adapter = nullptr;
};
template<typename T, typename... Ts>
RMat make_rmat(Ts&&... args) { return { std::make_shared<T>(std::forward<Ts>(args)...) }; }
/** @} */
} //namespace cv
#endif /* OPENCV_GAPI_RMAT_HPP */