mirror of
https://github.com/opencv/opencv.git
synced 2025-01-23 01:53:13 +08:00
416bf3253d
* attempt to add 0d/1d mat support to OpenCV * revised the patch; now 1D mat is treated as 1xN 2D mat rather than Nx1. * a step towards 'green' tests * another little step towards 'green' tests * calib test failures seem to be fixed now * more fixes _core & _dnn * another step towards green ci; even 0D mat's (a.k.a. scalars) are now partly supported! * * fixed strange bug in aruco/charuco detector, not sure why it did not work * also fixed a few remaining failures (hopefully) in dnn & core * disabled failing GAPI tests - too complex to dig into this compiler pipeline * hopefully fixed java tests * trying to fix some more tests * quick followup fix * continue to fix test failures and warnings * quick followup fix * trying to fix some more tests * partly fixed support for 0D/scalar UMat's * use updated parseReduce() from upstream * trying to fix the remaining test failures * fixed [ch]aruco tests in Python * still trying to fix tests * revert "fix" in dnn's CUDA tensor * trying to fix dnn+CUDA test failures * fixed 1D umat creation * hopefully fixed remaining cuda test failures * removed training whitespaces
152 lines
7.0 KiB
C++
152 lines
7.0 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
#include "test_precomp.hpp"
|
|
#include <opencv2/core/utils/logger.hpp>
|
|
#include <opencv2/ts/cuda_test.hpp> // EXPECT_MAT_NEAR
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
TEST(multiview_calibration, accuracy) {
|
|
// convert euler angles to rotation matrix
|
|
const auto euler2rot = [] (double x, double y, double z) {
|
|
cv::Matx33d R_x(1, 0, 0, 0, cos(x), -sin(x), 0, sin(x), cos(x));
|
|
cv::Matx33d R_y(cos(y), 0, sin(y), 0, 1, 0, -sin(y), 0, cos(y));
|
|
cv::Matx33d R_z(cos(z), -sin(z), 0, sin(z), cos(z), 0, 0, 0, 1);
|
|
return cv::Mat(R_z * R_y * R_x);
|
|
};
|
|
const cv::Size board_size (5,4);
|
|
cv::RNG rng(0);
|
|
const double board_len = 0.08, noise_std = 0.04;
|
|
const int num_cameras = 4, num_pts = board_size.area();
|
|
std::vector<cv::Vec3f> board_pattern (num_pts);
|
|
// fill pattern points
|
|
for (int j = 0; j < board_size.height; j++) {
|
|
for (int i = 0; i < board_size.width; i++) {
|
|
board_pattern[j*board_size.width+i] = cv::Vec3f ((float)i, (float)j, 0)*board_len;
|
|
}
|
|
}
|
|
std::vector<bool> is_fisheye(num_cameras, false);
|
|
std::vector<cv::Size> image_sizes(num_cameras);
|
|
std::vector<cv::Mat> Ks_gt, distortions_gt, Rs_gt, Ts_gt;
|
|
for (int c = 0; c < num_cameras; c++) {
|
|
// generate intrinsics and extrinsics
|
|
image_sizes[c] = cv::Size(rng.uniform(1300, 1500), rng.uniform(900, 1300));
|
|
const double focal = rng.uniform(900.0, 1300.0);
|
|
cv::Matx33d K(focal, 0, (double)image_sizes[c].width/2.,
|
|
0, focal, (double)image_sizes[c].height/2.,
|
|
0, 0, 1);
|
|
cv::Matx<double, 1, 5> dist (rng.uniform(1e-1, 3e-1), rng.uniform(1e-2, 5e-2), rng.uniform(1e-2, 5e-2), rng.uniform(1e-2, 5e-2), rng.uniform(1e-2, 5e-2));
|
|
Ks_gt.emplace_back(cv::Mat(K));
|
|
distortions_gt.emplace_back(cv::Mat(dist));
|
|
if (c == 0) {
|
|
// I | 0
|
|
Rs_gt.emplace_back(cv::Mat(cv::Matx33d::eye()));
|
|
Ts_gt.emplace_back(cv::Mat(cv::Vec3d::zeros()));
|
|
} else {
|
|
const double ty_min = -.3, ty_max = .3, tx_min = -.3, tx_max = .3, tz_min = -.1, tz_max = .1;
|
|
const double yaw_min = -20, yaw_max = 20, pitch_min = -20, pitch_max = 20, roll_min = -20, roll_max = 20;
|
|
Rs_gt.emplace_back(euler2rot(rng.uniform(yaw_min, yaw_max)*M_PI/180,
|
|
rng.uniform(pitch_min, pitch_max)*M_PI/180,
|
|
rng.uniform(roll_min, roll_max)*M_PI/180));
|
|
Ts_gt.emplace_back(cv::Mat(cv::Vec3d(rng.uniform(tx_min, tx_max),
|
|
rng.uniform(ty_min, ty_max),
|
|
rng.uniform(tz_min, tz_max))));
|
|
}
|
|
}
|
|
|
|
const int MAX_SAMPLES = 2000, MAX_FRAMES = 50;
|
|
cv::Mat pattern (board_pattern, true/*copy*/);
|
|
pattern = pattern.reshape(1, num_pts).t();
|
|
pattern.row(2) = 2.0; // set approximate depth of object points
|
|
const double ty_min = -2, ty_max = 2, tx_min = -2, tx_max = 2, tz_min = -1, tz_max = 1;
|
|
const double yaw_min = -45, yaw_max = 45, pitch_min = -45, pitch_max = 45, roll_min = -45, roll_max = 45;
|
|
std::vector<std::vector<cv::Vec3f>> objPoints;
|
|
std::vector<std::vector<cv::Mat>> image_points_all(num_cameras);
|
|
cv::Mat ones = cv::Mat_<float>::ones(1, num_pts);
|
|
std::vector<std::vector<uchar>> visibility;
|
|
cv::Mat centroid = cv::Mat(cv::Matx31f(
|
|
(float)cv::mean(pattern.row(0)).val[0],
|
|
(float)cv::mean(pattern.row(1)).val[0],
|
|
(float)cv::mean(pattern.row(2)).val[0]));
|
|
for (int f = 0; f < MAX_SAMPLES; f++) {
|
|
cv::Mat R = euler2rot(rng.uniform(yaw_min, yaw_max)*M_PI/180,
|
|
rng.uniform(pitch_min, pitch_max)*M_PI/180,
|
|
rng.uniform(roll_min, roll_max)*M_PI/180);
|
|
cv::Mat t = cv::Mat(cv::Matx31f(
|
|
(float)rng.uniform(tx_min, tx_max),
|
|
(float)rng.uniform(ty_min, ty_max),
|
|
(float)rng.uniform(tz_min, tz_max)));
|
|
|
|
R.convertTo(R, CV_32F);
|
|
cv::Mat pattern_new = (R * (pattern - centroid * ones) + centroid * ones + t * ones).t();
|
|
|
|
std::vector<cv::Mat> img_pts_cams(num_cameras);
|
|
std::vector<uchar> visible(num_cameras, (uchar)0);
|
|
int num_visible_patterns = 0;
|
|
for (int c = 0; c < num_cameras; c++) {
|
|
cv::Mat img_pts;
|
|
if (is_fisheye[c]) {
|
|
cv::fisheye::projectPoints(pattern_new, img_pts, Rs_gt[c], Ts_gt[c], Ks_gt[c], distortions_gt[c]);
|
|
} else {
|
|
cv::projectPoints(pattern_new, Rs_gt[c], Ts_gt[c], Ks_gt[c], distortions_gt[c], img_pts);
|
|
}
|
|
|
|
// add normal / Gaussian noise to image points
|
|
cv::Mat noise (img_pts.rows, img_pts.cols, img_pts.type());
|
|
rng.fill(noise, cv::RNG::NORMAL, 0, noise_std);
|
|
img_pts += noise;
|
|
|
|
bool are_all_pts_in_image = true;
|
|
const auto * const pts = (float *) img_pts.data;
|
|
for (int i = 0; i < num_pts; i++) {
|
|
if (pts[i*2 ] < 0 || pts[i*2 ] > (float)image_sizes[c].width ||
|
|
pts[i*2+1] < 0 || pts[i*2+1] > (float)image_sizes[c].height) {
|
|
are_all_pts_in_image = false;
|
|
break;
|
|
}
|
|
}
|
|
if (are_all_pts_in_image) {
|
|
visible[c] = 1;
|
|
num_visible_patterns += 1;
|
|
img_pts.copyTo(img_pts_cams[c]);
|
|
}
|
|
}
|
|
|
|
if (num_visible_patterns >= 2) {
|
|
objPoints.emplace_back(board_pattern);
|
|
visibility.emplace_back(visible);
|
|
for (int c = 0; c < num_cameras; c++) {
|
|
image_points_all[c].emplace_back(img_pts_cams[c].clone());
|
|
}
|
|
if (objPoints.size() >= MAX_FRAMES)
|
|
break;
|
|
}
|
|
}
|
|
cv::Mat visibility_mat = cv::Mat_<uchar>(num_cameras, (int)objPoints.size());
|
|
for (int c = 0; c < num_cameras; c++) {
|
|
for (int f = 0; f < (int)objPoints.size(); f++) {
|
|
visibility_mat.at<uchar>(c, f) = visibility[f][c];
|
|
}
|
|
}
|
|
|
|
std::vector<cv::Mat> Ks, distortions, Rs, Ts;
|
|
cv::Mat errors_mat, output_pairs, rvecs0, tvecs0;
|
|
calibrateMultiview (objPoints, image_points_all, image_sizes, visibility_mat,
|
|
Rs, Ts, Ks, distortions, rvecs0, tvecs0, is_fisheye, errors_mat, output_pairs, false);
|
|
|
|
const double K_err_tol = 1e1, dist_tol = 5e-2, R_tol = 1e-2, T_tol = 1e-2;
|
|
for (int c = 0; c < num_cameras; c++) {
|
|
cv::Mat R;
|
|
cv::Rodrigues(Rs[c], R);
|
|
EXPECT_MAT_NEAR(Ks_gt[c], Ks[c], K_err_tol);
|
|
CV_LOG_INFO(NULL, "true distortions: " << distortions_gt[c]);
|
|
CV_LOG_INFO(NULL, "found distortions: " << distortions[c]);
|
|
EXPECT_MAT_NEAR(distortions_gt[c], distortions[c], dist_tol);
|
|
EXPECT_MAT_NEAR(Rs_gt[c], R, R_tol);
|
|
EXPECT_MAT_NEAR(Ts_gt[c], Ts[c], T_tol);
|
|
}
|
|
}
|
|
}}
|