opencv/modules/gapi/src/backends/ie/giebackend.cpp
2021-12-24 18:04:11 +03:00

1517 lines
62 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2021 Intel Corporation
#include "precomp.hpp"
// needs to be included regardless if IE is present or not
// (cv::gapi::ie::backend() is still there and is defined always)
#include "backends/ie/giebackend.hpp"
#ifdef HAVE_INF_ENGINE
#if INF_ENGINE_RELEASE <= 2019010000
# error G-API IE module supports only OpenVINO IE >= 2019 R1
#endif
#include <functional>
#include <unordered_set>
#include <atomic>
#include <ade/util/algorithm.hpp>
#include <ade/util/range.hpp>
#include <ade/util/zip_range.hpp>
#include <ade/util/chain_range.hpp>
#include <ade/typed_graph.hpp>
#include <opencv2/core/utility.hpp>
#include <opencv2/core/utils/logger.hpp>
#include <opencv2/gapi/gcommon.hpp>
#include <opencv2/gapi/garray.hpp>
#include <opencv2/gapi/gopaque.hpp>
#include <opencv2/gapi/util/any.hpp>
#include <opencv2/gapi/gtype_traits.hpp>
#include <opencv2/gapi/infer.hpp>
#include <opencv2/gapi/own/convert.hpp>
#include <opencv2/gapi/gframe.hpp>
#include "compiler/gobjref.hpp"
#include "compiler/gmodel.hpp"
#include "backends/ie/util.hpp"
#include "backends/ie/giebackend/giewrapper.hpp"
#include "api/gbackend_priv.hpp" // FIXME: Make it part of Backend SDK!
#include "logger.hpp"
#if INF_ENGINE_RELEASE < 2021010000
#include "ie_compound_blob.h"
#endif
#if defined(HAVE_TBB)
# include <tbb/concurrent_queue.h> // FIXME: drop it from here!
template<typename T> using QueueClass = tbb::concurrent_bounded_queue<T>;
#else
# include "executor/conc_queue.hpp"
template<typename T> using QueueClass = cv::gapi::own::concurrent_bounded_queue<T>;
#endif // TBB
#include "utils/itt.hpp"
namespace IE = InferenceEngine;
namespace {
inline IE::ROI toIE(const cv::Rect &rc) {
return IE::ROI
{ 0u
, static_cast<std::size_t>(rc.x)
, static_cast<std::size_t>(rc.y)
, static_cast<std::size_t>(rc.width)
, static_cast<std::size_t>(rc.height)
};
}
inline IE::SizeVector toIE(const cv::MatSize &sz) {
return cv::to_own<IE::SizeVector::value_type>(sz);
}
inline std::vector<int> toCV(const IE::SizeVector &vsz) {
std::vector<int> result;
result.reserve(vsz.size());
for (auto sz : vsz) {
result.push_back(ade::util::checked_cast<int>(sz));
}
return result;
}
inline IE::Layout toIELayout(const std::size_t ndims) {
static const IE::Layout lts[] = {
IE::Layout::SCALAR,
IE::Layout::C,
IE::Layout::NC,
IE::Layout::CHW,
IE::Layout::NCHW,
IE::Layout::NCDHW,
};
// FIXME: This is not really a good conversion,
// since it may also stand for NHWC/HW/CN/NDHWC data
CV_Assert(ndims < sizeof(lts) / sizeof(lts[0]));
return lts[ndims];
}
inline IE::Precision toIE(int depth) {
switch (depth) {
case CV_8U: return IE::Precision::U8;
case CV_32S: return IE::Precision::I32;
case CV_32F: return IE::Precision::FP32;
case CV_16F: return IE::Precision::FP16;
default: GAPI_Assert(false && "IE. Unsupported data type");
}
return IE::Precision::UNSPECIFIED;
}
inline int toCV(IE::Precision prec) {
switch (prec) {
case IE::Precision::U8: return CV_8U;
case IE::Precision::FP32: return CV_32F;
case IE::Precision::I32: return CV_32S;
case IE::Precision::I64: return CV_32S;
case IE::Precision::FP16: return CV_16F;
default: GAPI_Assert(false && "IE. Unsupported data type");
}
return -1;
}
inline IE::TensorDesc toIE(const cv::Mat &mat, cv::gapi::ie::TraitAs hint) {
const auto &sz = mat.size;
// NB: For some reason RGB image is 2D image
// (since channel component is not counted here).
// Note: regular 2D vectors also fall into this category
if (sz.dims() == 2 && hint == cv::gapi::ie::TraitAs::IMAGE)
{
// NB: This logic is mainly taken from IE samples
const size_t channels = mat.channels();
const size_t height = mat.size().height;
const size_t width = mat.size().width;
const size_t strideH = mat.step1();
IE::BlockingDesc bdesc({1, height, width, channels} /* blocking dims */,
{0, 2, 3, 1} /* order for NHWC */,
0 /* offset */,
{0, 0, 0, 0} /* offsets for dims */,
{strideH * height, strideH, channels, 1} /* strides for dims */);
return IE::TensorDesc(toIE(mat.depth()),
IE::SizeVector{1, channels, height, width}, bdesc);
}
return IE::TensorDesc(toIE(mat.depth()), toIE(sz), toIELayout(sz.dims()));
}
inline IE::Blob::Ptr wrapIE(const cv::Mat &mat, cv::gapi::ie::TraitAs hint) {
const auto tDesc = toIE(mat, hint);
switch (mat.depth()) {
// NB: Seems there's no way to create an untyped (T-less) Blob::Ptr
// in IE given only precision via TensorDesc. So we have to do this:
#define HANDLE(E,T) \
case CV_##E: return IE::make_shared_blob<T>(tDesc, const_cast<T*>(mat.ptr<T>()))
HANDLE(8U, uint8_t);
HANDLE(32F, float);
HANDLE(32S, int);
HANDLE(16F, int16_t);
#undef HANDLE
default: GAPI_Assert(false && "IE. Unsupported data type");
}
return IE::Blob::Ptr{};
}
inline IE::Blob::Ptr wrapIE(const cv::MediaFrame::View& view,
const cv::GFrameDesc& desc) {
switch (desc.fmt) {
case cv::MediaFormat::BGR: {
auto bgr = cv::Mat(desc.size, CV_8UC3, view.ptr[0], view.stride[0]);
return wrapIE(bgr, cv::gapi::ie::TraitAs::IMAGE);
}
case cv::MediaFormat::NV12: {
auto y_plane = cv::Mat(desc.size, CV_8UC1, view.ptr[0], view.stride[0]);
auto uv_plane = cv::Mat(desc.size / 2, CV_8UC2, view.ptr[1], view.stride[1]);
return cv::gapi::ie::util::to_ie(y_plane, uv_plane);
}
default:
GAPI_Assert(false && "Unsupported media format for IE backend");
}
GAPI_Assert(false);
}
template<class MatType>
inline void copyFromIE(const IE::Blob::Ptr &blob, MatType &mat) {
switch (blob->getTensorDesc().getPrecision()) {
#define HANDLE(E,T) \
case IE::Precision::E: std::copy_n(blob->buffer().as<T*>(), \
mat.total(), \
reinterpret_cast<T*>(mat.data)); \
break;
HANDLE(U8, uint8_t);
HANDLE(FP32, float);
HANDLE(I32, int);
HANDLE(FP16, cv::float16_t);
#undef HANDLE
case IE::Precision::I64: {
GAPI_LOG_WARNING(NULL, "INT64 isn't supported for cv::Mat. Conversion to INT32 is used.");
cv::gimpl::convertInt64ToInt32(blob->buffer().as<int64_t*>(),
reinterpret_cast<int*>(mat.data),
mat.total());
break;
}
default: GAPI_Assert(false && "IE. Unsupported data type");
}
}
// IE-specific metadata, represents a network with its parameters
struct IEUnit {
static const char *name() { return "IEModelConfig"; }
cv::gapi::ie::detail::ParamDesc params;
IE::CNNNetwork net;
IE::ExecutableNetwork this_network;
cv::gimpl::ie::wrap::Plugin this_plugin;
InferenceEngine::RemoteContext::Ptr rctx = nullptr;
// FIXME: Unlike loadNetwork case, importNetwork requires that preprocessing
// should be passed as ExecutableNetwork::SetBlob method, so need to collect
// and store this information at the graph compilation stage (outMeta) and use in runtime.
using PreProcMap = std::unordered_map<std::string, IE::PreProcessInfo>;
PreProcMap preproc_map;
explicit IEUnit(const cv::gapi::ie::detail::ParamDesc &pp)
: params(pp) {
InferenceEngine::ParamMap* ctx_params =
cv::util::any_cast<InferenceEngine::ParamMap>(&params.context_config);
if (ctx_params != nullptr) {
auto ie_core = cv::gimpl::ie::wrap::getCore();
rctx = ie_core.CreateContext(params.device_id, *ctx_params);
}
if (params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Load) {
net = cv::gimpl::ie::wrap::readNetwork(params);
// NB: Set batch size only if user asked. (don't set by default)
if (params.batch_size.has_value()) {
net.setBatchSize(params.batch_size.value());
}
} else if (params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Import) {
this_plugin = cv::gimpl::ie::wrap::getPlugin(params);
this_network = cv::gimpl::ie::wrap::importNetwork(this_plugin, params, rctx);
if (!params.reshape_table.empty() || !params.layer_names_to_reshape.empty()) {
GAPI_LOG_WARNING(NULL, "Reshape isn't supported for imported network");
}
} else {
cv::util::throw_error(std::logic_error("Unsupported ParamDesc::Kind"));
}
// The practice shows that not all inputs and not all outputs
// are mandatory to specify in IE model.
// So what we're concerned here about is:
// if operation's (not topology's) input/output number is
// greater than 1, then we do care about input/output layer
// names. Otherwise, names are picked up automatically.
// TODO: Probably this check could be done at the API entry point? (gnet)
if (params.num_in > 1u && params.num_in != params.input_names.size()) {
cv::util::throw_error(std::logic_error("Please specify input layer names for "
+ params.model_path));
}
if (params.num_out > 1u && params.num_out != params.output_names.size()) {
cv::util::throw_error(std::logic_error("Please specify output layer names for "
+ params.model_path));
}
if (params.num_in == 1u && params.input_names.empty()) {
if (params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Load) {
params.input_names = { net.getInputsInfo().begin()->first };
} else {
params.input_names = { this_network.GetInputsInfo().begin()->first };
}
}
if (params.num_out == 1u && params.output_names.empty()) {
if (params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Load) {
params.output_names = { net.getOutputsInfo().begin()->first };
} else {
params.output_names = { this_network.GetOutputsInfo().begin()->first };
}
}
if (!params.reshape_table.empty()) {
GAPI_Assert((params.reshape_table.size() + params.layer_names_to_reshape.size()) <=
params.num_in &&
"Number of layers to reshape must be less than or equal to number of inputs");
}
}
// This method is [supposed to be] called at Island compilation stage
cv::gimpl::ie::IECompiled compile() const {
IEUnit* non_const_this = const_cast<IEUnit*>(this);
// FIXME: LoadNetwork must be called only after all necessary model
// inputs information is set, since it's done in outMeta and compile called after that,
// this place seems to be suitable, but consider another place not to break const agreements.
if (params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Load) {
non_const_this->this_plugin = cv::gimpl::ie::wrap::getPlugin(params);
non_const_this->this_network = cv::gimpl::ie::wrap::loadNetwork(non_const_this->this_plugin,
net, params, rctx);
}
return {params, this_plugin, this_network};
}
};
class IECallContext
{
public:
IECallContext(const IEUnit & unit,
cv::gimpl::GIslandExecutable::IOutput & output,
const cv::GArgs & args,
const std::vector<cv::gimpl::RcDesc> & outs,
std::vector<cv::gimpl::GIslandExecutable::InObj> && input_objs,
std::vector<cv::gimpl::GIslandExecutable::OutObj> && output_objs);
const cv::GArgs& inArgs() const;
// Generic accessor API
template<typename T>
const T& inArg(std::size_t input) const {
return m_args.at(input).get<T>();
}
template<typename T>
std::vector<T>& outVecR(std::size_t output) {
return outVecRef(output).wref<T>();
}
// Syntax sugar
cv::GShape inShape(std::size_t input) const;
const cv::Mat& inMat (std::size_t input) const;
const cv::MediaFrame& inFrame(std::size_t input) const;
const cv::GRunArg& input (std::size_t idx) const;
cv::GRunArgP output (std::size_t idx);
cv::Mat& outMatR(std::size_t idx);
const IEUnit &uu;
cv::gimpl::GIslandExecutable::IOutput &out;
// NB: Need to gurantee that MediaFrame::View don't die until request is over.
using Views = std::vector<std::unique_ptr<cv::MediaFrame::View>>;
Views views;
private:
cv::detail::VectorRef& outVecRef(std::size_t idx);
cv::GArg packArg(const cv::GArg &arg);
// To store input/output data from frames
std::vector<cv::gimpl::GIslandExecutable::InObj> m_input_objs;
std::vector<cv::gimpl::GIslandExecutable::OutObj> m_output_objs;
// To simplify access to cv::Mat inside cv::RMat
cv::gimpl::Mag m_res;
// FIXME: avoid conversion of arguments from internal representation to OpenCV one on each call
//to OCV kernel. (This can be achieved by a two single time conversions in GCPUExecutable::run,
//once on enter for input and output arguments, and once before return for output arguments only
// FIXME: check if the above applies to this backend (taken from CPU)
std::unordered_map<std::size_t, cv::GRunArgP> m_results;
// Input parameters passed to an inference operation.
cv::GArgs m_args;
cv::GShapes m_in_shapes;
};
IECallContext::IECallContext(const IEUnit & unit,
cv::gimpl::GIslandExecutable::IOutput & output,
const cv::GArgs & args,
const std::vector<cv::gimpl::RcDesc> & outs,
std::vector<cv::gimpl::GIslandExecutable::InObj> && input_objs,
std::vector<cv::gimpl::GIslandExecutable::OutObj> && output_objs)
: uu(unit), out(output), m_input_objs(std::move(input_objs)), m_output_objs(std::move(output_objs))
{
for (auto& it : m_input_objs) cv::gimpl::magazine::bindInArg (m_res, it.first, it.second);
for (auto& it : m_output_objs) cv::gimpl::magazine::bindOutArg(m_res, it.first, it.second);
m_args.reserve(args.size());
using namespace std::placeholders;
ade::util::transform(args,
std::back_inserter(m_args),
std::bind(&IECallContext::packArg, this, _1));
ade::util::transform(args, std::back_inserter(m_in_shapes),
[](const cv::GArg& arg) {
return arg.get<cv::gimpl::RcDesc>().shape;
});
for (const auto out_it : ade::util::indexed(outs)) {
// FIXME: Can the same GArg type resolution mechanism be reused here?
const auto port = ade::util::index(out_it);
const auto desc = ade::util::value(out_it);
m_results[port] = cv::gimpl::magazine::getObjPtr(m_res, desc);
}
}
const cv::GArgs& IECallContext::inArgs() const {
return m_args;
}
cv::GShape IECallContext::inShape(std::size_t i) const {
return m_in_shapes[i];
}
const cv::Mat& IECallContext::inMat(std::size_t input) const {
return inArg<cv::Mat>(input);
}
const cv::MediaFrame& IECallContext::inFrame(std::size_t input) const {
return inArg<cv::MediaFrame>(input);
}
cv::Mat& IECallContext::outMatR(std::size_t idx) {
return *cv::util::get<cv::Mat*>(m_results.at(idx));
}
cv::GRunArgP IECallContext::output(std::size_t idx) {
return m_output_objs[idx].second;
};
const cv::GRunArg& IECallContext::input(std::size_t idx) const {
return m_input_objs[idx].second;
}
cv::detail::VectorRef& IECallContext::outVecRef(std::size_t idx) {
return cv::util::get<cv::detail::VectorRef>(m_results.at(idx));
}
cv::GArg IECallContext::packArg(const cv::GArg &arg) {
// No API placeholders allowed at this point
// FIXME: this check has to be done somewhere in compilation stage.
GAPI_Assert( arg.kind != cv::detail::ArgKind::GMAT
&& arg.kind != cv::detail::ArgKind::GSCALAR
&& arg.kind != cv::detail::ArgKind::GARRAY);
if (arg.kind != cv::detail::ArgKind::GOBJREF) {
cv::util::throw_error(std::logic_error("Inference supports G-types ONLY!"));
}
GAPI_Assert(arg.kind == cv::detail::ArgKind::GOBJREF);
// Wrap associated CPU object (either host or an internal one)
// FIXME: object can be moved out!!! GExecutor faced that.
const cv::gimpl::RcDesc &ref = arg.get<cv::gimpl::RcDesc>();
switch (ref.shape)
{
case cv::GShape::GMAT: return cv::GArg(m_res.slot<cv::Mat>()[ref.id]);
// Note: .at() is intentional for GArray as object MUST be already there
// (and constructed by either bindIn/Out or resetInternal)
case cv::GShape::GARRAY: return cv::GArg(m_res.slot<cv::detail::VectorRef>().at(ref.id));
// Note: .at() is intentional for GOpaque as object MUST be already there
// (and constructed by either bindIn/Out or resetInternal)
case cv::GShape::GOPAQUE: return cv::GArg(m_res.slot<cv::detail::OpaqueRef>().at(ref.id));
case cv::GShape::GFRAME: return cv::GArg(m_res.slot<cv::MediaFrame>().at(ref.id));
default:
cv::util::throw_error(std::logic_error("Unsupported GShape type"));
break;
}
}
struct IECallable {
static const char *name() { return "IERequestCallable"; }
using Run = std::function<void(std::shared_ptr<IECallContext>, cv::gimpl::ie::RequestPool&)>;
Run run;
};
struct KImpl {
cv::gimpl::CustomMetaFunction::CM customMetaFunc;
IECallable::Run run;
};
// FIXME: Is there a way to take a typed graph (our GModel),
// and create a new typed graph _ATOP_ of that (by extending with a couple of
// new types?).
// Alternatively, is there a way to compose types graphs?
//
// If not, we need to introduce that!
using GIEModel = ade::TypedGraph
< cv::gimpl::Protocol
, cv::gimpl::Op
, cv::gimpl::NetworkParams
, cv::gimpl::CustomMetaFunction
, IEUnit
, IECallable
>;
// FIXME: Same issue with Typed and ConstTyped
using GConstGIEModel = ade::ConstTypedGraph
< cv::gimpl::Protocol
, cv::gimpl::Op
, cv::gimpl::NetworkParams
, cv::gimpl::CustomMetaFunction
, IEUnit
, IECallable
>;
inline IE::Blob::Ptr extractRemoteBlob(IECallContext& ctx, std::size_t i) {
GAPI_Assert(ctx.inShape(i) == cv::GShape::GFRAME &&
"Remote blob is supported for MediaFrame only");
cv::util::any any_blob_params = ctx.inFrame(i).blobParams();
auto ie_core = cv::gimpl::ie::wrap::getCore();
using ParamType = std::pair<InferenceEngine::TensorDesc,
InferenceEngine::ParamMap>;
ParamType* blob_params = cv::util::any_cast<ParamType>(&any_blob_params);
if (blob_params == nullptr) {
GAPI_Assert(false && "Incorrect type of blobParams: "
"expected std::pair<InferenceEngine::TensorDesc,"
"InferenceEngine::ParamMap>");
}
return ctx.uu.rctx->CreateBlob(blob_params->first,
blob_params->second);
}
inline IE::Blob::Ptr extractBlob(IECallContext& ctx,
std::size_t i,
cv::gapi::ie::TraitAs hint) {
if (ctx.uu.rctx != nullptr) {
return extractRemoteBlob(ctx, i);
}
switch (ctx.inShape(i)) {
case cv::GShape::GFRAME: {
const auto& frame = ctx.inFrame(i);
ctx.views.emplace_back(new cv::MediaFrame::View(frame.access(cv::MediaFrame::Access::R)));
return wrapIE(*(ctx.views.back()), frame.desc());
}
case cv::GShape::GMAT: {
return wrapIE(ctx.inMat(i), hint);
}
default:
GAPI_Assert("Unsupported input shape for IE backend");
}
GAPI_Assert(false);
}
static void setBlob(InferenceEngine::InferRequest& req,
const std::string& layer_name,
const IE::Blob::Ptr& blob,
const IECallContext& ctx) {
// TODO: Ideally we shouldn't do SetBlob() but GetBlob() instead,
// and redirect our data producers to this memory
// (A memory dialog comes to the picture again)
using namespace cv::gapi::ie::detail;
if (ctx.uu.params.kind == ParamDesc::Kind::Load) {
req.SetBlob(layer_name, blob);
} else {
GAPI_Assert(ctx.uu.params.kind == ParamDesc::Kind::Import);
req.SetBlob(layer_name, blob, ctx.uu.preproc_map.at(layer_name));
}
}
} // anonymous namespace
std::vector<InferenceEngine::InferRequest> cv::gimpl::ie::IECompiled::createInferRequests() {
std::vector<InferenceEngine::InferRequest> requests;
requests.reserve(params.nireq);
for (size_t i = 0; i < params.nireq; ++i) {
requests.push_back(this_network.CreateInferRequest());
auto& request = requests.back();
// Bind const data to infer request
for (auto &&p : params.const_inputs) {
// FIXME: SetBlob is known to be inefficient,
// it is worth to make a customizable "initializer" and pass the
// cv::Mat-wrapped blob there to support IE's optimal "GetBlob idiom"
// Still, constant data is to set only once.
request.SetBlob(p.first, wrapIE(p.second.first, p.second.second));
}
}
return requests;
}
class cv::gimpl::ie::RequestPool {
public:
using RunF = std::function<void(InferenceEngine::InferRequest&)>;
using CallbackF = std::function<void(InferenceEngine::InferRequest&)>;
// NB: The task is represented by:
// RunF - function which is set blobs and run async inference.
// CallbackF - function which is obtain output blobs and post it to output.
struct Task {
RunF run;
CallbackF callback;
};
explicit RequestPool(std::vector<InferenceEngine::InferRequest>&& requests);
void execute(Task&& t);
void waitAll();
private:
void callback(Task task, InferenceEngine::InferRequest& request, size_t id);
void setup();
QueueClass<size_t> m_idle_ids;
std::vector<InferenceEngine::InferRequest> m_requests;
};
// RequestPool implementation //////////////////////////////////////////////
cv::gimpl::ie::RequestPool::RequestPool(std::vector<InferenceEngine::InferRequest>&& requests)
: m_requests(std::move(requests)) {
setup();
}
void cv::gimpl::ie::RequestPool::setup() {
for (size_t i = 0; i < m_requests.size(); ++i) {
m_idle_ids.push(i);
}
}
void cv::gimpl::ie::RequestPool::execute(cv::gimpl::ie::RequestPool::Task&& t) {
size_t id = 0u;
m_idle_ids.pop(id);
auto& request = m_requests[id];
request.SetCompletionCallback(
std::bind(&cv::gimpl::ie::RequestPool::callback, this, t, std::ref(request), id));
t.run(request);
}
void cv::gimpl::ie::RequestPool::callback(cv::gimpl::ie::RequestPool::Task task,
InferenceEngine::InferRequest& request,
size_t id) {
task.callback(request);
// NB: IE::InferRequest keeps the callback until the new one is set.
// Since user's callback might keep resources that should be released,
// need to destroy its after execution.
// Let's set the empty one to cause the destruction of a callback.
request.SetCompletionCallback([](){});
m_idle_ids.push(id);
}
// NB: Not thread-safe.
void cv::gimpl::ie::RequestPool::waitAll() {
// NB: It will be blocked if at least one request is busy.
for (size_t i = 0; i < m_requests.size(); ++i) {
size_t id = 0u;
m_idle_ids.pop(id);
}
setup();
}
// GCPUExcecutable implementation //////////////////////////////////////////////
cv::gimpl::ie::GIEExecutable::GIEExecutable(const ade::Graph &g,
const std::vector<ade::NodeHandle> &nodes)
: m_g(g), m_gm(m_g) {
// FIXME: Currently this backend is capable to run a single inference node only.
// Need to extend our island fusion with merge/not-to-merge decision making parametrization
GConstGIEModel iem(g);
for (auto &nh : nodes) {
switch (m_gm.metadata(nh).get<NodeType>().t) {
case NodeType::OP:
if (this_nh == nullptr) {
this_nh = nh;
this_iec = iem.metadata(this_nh).get<IEUnit>().compile();
m_reqPool.reset(new RequestPool(this_iec.createInferRequests()));
}
else
util::throw_error(std::logic_error("Multi-node inference is not supported!"));
break;
case NodeType::DATA: {
m_dataNodes.push_back(nh);
const auto &desc = m_gm.metadata(nh).get<Data>();
if (desc.storage == Data::Storage::CONST_VAL) {
util::throw_error(std::logic_error("No const data please!"));
}
if (desc.storage == Data::Storage::INTERNAL) {
util::throw_error(std::logic_error("No internal data please!"));
}
break;
}
default: util::throw_error(std::logic_error("Unsupported NodeType type"));
}
}
}
void cv::gimpl::ie::GIEExecutable::run(cv::gimpl::GIslandExecutable::IInput &in,
cv::gimpl::GIslandExecutable::IOutput &out) {
// General alghoritm:
// 1. Collect island inputs/outputs.
// 2. Create kernel context. (Every kernel has his own context).
// 3. If the EndOfStream message is recieved, wait until all passed task are done.
// 4.
// 5.1 Run the kernel.
// 5.2 Kernel wait for all nececcary infer requests and start asynchronous execution.
// 5.3 After the kernel is finished continue processing next frame.
//
// 5. If graph is compiled in non-streaming mode, wait until all tasks are done.
std::vector<InObj> input_objs;
std::vector<OutObj> output_objs;
const auto &in_desc = in.desc();
const auto in_msg = in.get();
if (cv::util::holds_alternative<cv::gimpl::EndOfStream>(in_msg))
{
// (3) Wait until all passed task are done.
m_reqPool->waitAll();
out.post(cv::gimpl::EndOfStream{});
return;
}
GAPI_Assert(cv::util::holds_alternative<cv::GRunArgs>(in_msg));
const auto in_vector = cv::util::get<cv::GRunArgs>(in_msg);
// (1) Collect island inputs/outputs
input_objs.reserve(in_desc.size());
for (auto &&it: ade::util::zip(ade::util::toRange(in_desc),
ade::util::toRange(in_vector)))
{
input_objs.emplace_back(std::get<0>(it), std::get<1>(it));
}
const auto &out_desc = out.desc();
output_objs.reserve(out_desc.size());
for (auto &&it: ade::util::indexed(ade::util::toRange(out_desc)))
{
output_objs.emplace_back(ade::util::value(it),
out.get(ade::util::checked_cast<int>(ade::util::index(it))));
}
GConstGIEModel giem(m_g);
const auto &uu = giem.metadata(this_nh).get<IEUnit>();
const auto &op = m_gm.metadata(this_nh).get<Op>();
// (2) Create kernel context
auto ctx = std::make_shared<IECallContext>(uu, out, op.args, op.outs,
std::move(input_objs), std::move(output_objs));
const auto &kk = giem.metadata(this_nh).get<IECallable>();
// (4) Run the kernel.
kk.run(ctx, *m_reqPool);
// (5) In non-streaming mode need to wait until the all tasks are done
// FIXME: Is there more graceful way to handle this case ?
if (!m_gm.metadata().contains<Streaming>()) {
m_reqPool->waitAll();
}
}
namespace cv {
namespace gimpl {
namespace ie {
static void configureInputReshapeByImage(const IE::InputInfo::Ptr& ii,
const cv::GMetaArg mm,
IE::ICNNNetwork::InputShapes& input_reshape_table) {
const auto& layer_name = ii->name();
// Finding name in reshape table
const auto name_pos_in_table = input_reshape_table.find(layer_name);
// If contains then reshape for this layer already configured by shapes
// otherwise create a new element of reshape table with name and dimension
// which based on input image size.
if (name_pos_in_table != input_reshape_table.end()) {
GAPI_Assert(false &&
"Names of layers for reshape with specified dimensions shouldn't intersect with names for reshape by image");
}
cv::Size image_sz;
switch (mm.index()) {
case cv::GMetaArg::index_of<cv::GMatDesc>():
{
const auto &meta = util::get<cv::GMatDesc>(mm);
image_sz = meta.size;
break;
}
case cv::GMetaArg::index_of<cv::GFrameDesc>():
{
const auto &meta = util::get<cv::GFrameDesc>(mm);
image_sz = meta.size;
break;
}
default:
util::throw_error(std::runtime_error("Unsupported input meta for IE backend"));
}
auto input_dims = ii->getTensorDesc().getDims();
const auto size = input_dims.size();
if (size <= 1) {
GAPI_Assert(false && "Unsupported number of dimensions for reshape by image");
}
input_dims.at(size - 2) = static_cast<size_t>(image_sz.height);
input_dims.at(size - 1) = static_cast<size_t>(image_sz.width);
// Adding new element to reshape table
input_reshape_table.emplace(layer_name, input_dims);
}
static void configureInputInfo(const IE::InputInfo::Ptr& ii, const cv::GMetaArg mm) {
switch (mm.index()) {
case cv::GMetaArg::index_of<cv::GMatDesc>():
{
ii->setPrecision(toIE(util::get<cv::GMatDesc>(mm).depth));
break;
}
case cv::GMetaArg::index_of<cv::GFrameDesc>():
{
const auto &meta = util::get<cv::GFrameDesc>(mm);
switch (meta.fmt) {
case cv::MediaFormat::NV12:
ii->getPreProcess().setColorFormat(IE::ColorFormat::NV12);
break;
case cv::MediaFormat::BGR:
// NB: Do nothing
break;
default:
GAPI_Assert(false && "Unsupported media format for IE backend");
}
ii->setPrecision(toIE(CV_8U));
break;
}
default:
util::throw_error(std::runtime_error("Unsupported input meta for IE backend"));
}
}
static IE::PreProcessInfo configurePreProcInfo(const IE::InputInfo::CPtr& ii,
const cv::GMetaArg& mm) {
IE::PreProcessInfo info;
if (cv::util::holds_alternative<cv::GFrameDesc>(mm)) {
auto desc = cv::util::get<cv::GFrameDesc>(mm);
if (desc.fmt == cv::MediaFormat::NV12) {
info.setColorFormat(IE::ColorFormat::NV12);
}
}
const auto layout = ii->getTensorDesc().getLayout();
if (layout == IE::Layout::NCHW ||
layout == IE::Layout::NHWC) {
info.setResizeAlgorithm(IE::RESIZE_BILINEAR);
}
return info;
}
// NB: This is a callback used by async infer
// to post outputs blobs (cv::GMat's).
static void PostOutputs(InferenceEngine::InferRequest &request,
std::shared_ptr<IECallContext> ctx) {
GAPI_ITT_STATIC_LOCAL_HANDLE(ie_cb_post_outputs_hndl, "IE_async_callback_PostOutputs");
GAPI_ITT_AUTO_TRACE_GUARD(ie_cb_post_outputs_hndl);
for (auto i : ade::util::iota(ctx->uu.params.num_out))
{
auto& out_mat = ctx->outMatR(i);
IE::Blob::Ptr this_blob = request.GetBlob(ctx->uu.params.output_names[i]);
copyFromIE(this_blob, out_mat);
auto output = ctx->output(i);
ctx->out.meta(output, ctx->input(0).meta);
ctx->out.post(std::move(output));
}
}
class PostOutputsList {
public:
PostOutputsList(size_t size,
std::shared_ptr<IECallContext> ctx,
std::vector<std::vector<int>>&& cached_dims);
void operator()(InferenceEngine::InferRequest &request, size_t pos) const;
private:
struct Priv {
size_t size;
std::atomic<size_t> finished{0u};
std::shared_ptr<IECallContext> ctx;
std::vector<std::vector<int>> cached_dims;
};
std::shared_ptr<Priv> m_priv;
};
PostOutputsList::PostOutputsList(size_t size,
std::shared_ptr<IECallContext> ctx,
std::vector<std::vector<int>>&& cached_dims)
: m_priv(new Priv()) {
m_priv->size = size;
m_priv->ctx = ctx;
m_priv->cached_dims = std::move(cached_dims);
}
void PostOutputsList::operator()(InferenceEngine::InferRequest &req, size_t pos) const {
auto&& ctx = m_priv->ctx;
auto&& cached_dims = m_priv->cached_dims;
auto&& finished = m_priv->finished;
auto&& size = m_priv->size;
for (auto i : ade::util::iota(ctx->uu.params.num_out)) {
std::vector<cv::Mat> &out_vec = ctx->outVecR<cv::Mat>(i);
IE::Blob::Ptr out_blob = req.GetBlob(ctx->uu.params.output_names[i]);
GAPI_Assert(out_blob);
// FIXME: Avoid data copy. Not sure if it is possible though
out_vec[pos].create(cached_dims[i], toCV(out_blob->getTensorDesc().getPrecision()));
copyFromIE(out_blob, out_vec[pos]);
}
++finished;
if (finished == size) {
for (auto i : ade::util::iota(ctx->uu.params.num_out)) {
auto output = ctx->output(i);
ctx->out.meta(output, ctx->input(0).meta);
ctx->out.post(std::move(output));
}
}
}
struct Infer: public cv::detail::KernelTag {
using API = cv::GInferBase;
static cv::gapi::GBackend backend() { return cv::gapi::ie::backend(); }
static KImpl kernel() { return KImpl{outMeta, run}; }
static cv::GMetaArgs outMeta(const ade::Graph &gr,
const ade::NodeHandle &nh,
const cv::GMetaArgs &in_metas,
const cv::GArgs &/*in_args*/) {
// Specify network's output layer metadata to the framework
// Also specify the input information to the IE from the framework
// NB: Have no clue if network's input [dimensions] may ever define
// its output dimensions. It seems possible with OpenCV DNN APIs
cv::GMetaArgs result;
GConstGIEModel gm(gr);
const auto &uu = gm.metadata(nh).get<IEUnit>();
IE::ICNNNetwork::InputShapes input_reshape_table = uu.params.reshape_table;
// Initialize input information
// Note our input layers list order matches the API order and so
// meta order.
GAPI_Assert(uu.params.input_names.size() == in_metas.size()
&& "Known input layers count doesn't match input meta count");
// NB: Configuring input precision and network reshape must be done
// only in the loadNetwork case.
using namespace cv::gapi::ie::detail;
if (uu.params.kind == ParamDesc::Kind::Load) {
auto inputs = uu.net.getInputsInfo();
for (auto &&it : ade::util::zip(ade::util::toRange(uu.params.input_names),
ade::util::toRange(in_metas))) {
const auto &input_name = std::get<0>(it);
auto ii = inputs.at(input_name);
const auto & mm = std::get<1>(it);
configureInputInfo(ii, mm);
if (uu.params.layer_names_to_reshape.find(input_name) !=
uu.params.layer_names_to_reshape.end()) {
configureInputReshapeByImage(ii, mm, input_reshape_table);
}
// NB: Configure resize only for NCHW/NHWC layout,
// since it isn't supposed to work with others.
auto layout = ii->getTensorDesc().getLayout();
if (layout == IE::Layout::NCHW ||
layout == IE::Layout::NHWC) {
ii->getPreProcess().setResizeAlgorithm(IE::RESIZE_BILINEAR);
}
}
// FIXME: This isn't the best place to call reshape function.
// Сorrect solution would be to do this in compile() method of network,
// but now input meta isn't passed to compile() method.
if (!input_reshape_table.empty()) {
const_cast<IE::CNNNetwork *>(&uu.net)->reshape(input_reshape_table);
}
} else {
GAPI_Assert(uu.params.kind == ParamDesc::Kind::Import);
auto inputs = uu.this_network.GetInputsInfo();
// FIXME: This isn't the best place to collect PreProcMap.
auto* non_const_prepm = const_cast<IEUnit::PreProcMap*>(&uu.preproc_map);
for (auto &&it : ade::util::zip(ade::util::toRange(uu.params.input_names),
ade::util::toRange(in_metas))) {
const auto &input_name = std::get<0>(it);
auto ii = inputs.at(input_name);
const auto & mm = std::get<1>(it);
non_const_prepm->emplace(input_name, configurePreProcInfo(ii, mm));
}
}
// FIXME: It would be nice here to have an exact number of network's
// input/output parameters. Probably GCall should store it here for us.
// It doesn't, as far as I know..
for (const auto &out_name : uu.params.output_names) {
// NOTE: our output_names vector follows the API order
// of this operation's outputs
const auto& desc =
uu.params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Load
? uu.net.getOutputsInfo().at(out_name)->getTensorDesc()
: uu.this_network.GetOutputsInfo().at(out_name)->getTensorDesc();
cv::GMatDesc outm(toCV(desc.getPrecision()),
toCV(desc.getDims()));
result.emplace_back(outm);
}
return result;
}
static void run(std::shared_ptr<IECallContext> ctx,
cv::gimpl::ie::RequestPool &reqPool) {
using namespace std::placeholders;
reqPool.execute(
cv::gimpl::ie::RequestPool::Task {
[ctx](InferenceEngine::InferRequest &req) {
// non-generic version for now:
// - assumes all inputs/outputs are always Mats
for (auto i : ade::util::iota(ctx->uu.params.num_in)) {
const auto& layer_name = ctx->uu.params.input_names[i];
auto layout =
ctx->uu.this_network.GetInputsInfo().
at(layer_name)->getTensorDesc().getLayout();
auto hint =
(layout == IE::Layout::NCHW || layout == IE::Layout::NHWC)
? cv::gapi::ie::TraitAs::IMAGE : cv::gapi::ie::TraitAs::TENSOR;
IE::Blob::Ptr this_blob = extractBlob(*ctx, i, hint);
setBlob(req, layer_name, this_blob, *ctx);
}
// FIXME: Should it be done by kernel ?
// What about to do that in RequestPool ?
req.StartAsync();
},
std::bind(PostOutputs, _1, ctx)
}
);
}
};
struct InferROI: public cv::detail::KernelTag {
using API = cv::GInferROIBase;
static cv::gapi::GBackend backend() { return cv::gapi::ie::backend(); }
static KImpl kernel() { return KImpl{outMeta, run}; }
static cv::GMetaArgs outMeta(const ade::Graph &gr,
const ade::NodeHandle &nh,
const cv::GMetaArgs &in_metas,
const cv::GArgs &/*in_args*/) {
cv::GMetaArgs result;
GConstGIEModel gm(gr);
const auto &uu = gm.metadata(nh).get<IEUnit>();
IE::ICNNNetwork::InputShapes input_reshape_table = uu.params.reshape_table;
// Initialize input information
// FIXME: So far it is pretty limited
GAPI_Assert(1u == uu.params.input_names.size());
GAPI_Assert(2u == in_metas.size());
const auto &input_name = uu.params.input_names.at(0);
auto &&mm = in_metas.at(1u);
// NB: Configuring input precision and network reshape must be done
// only in the loadNetwork case.
if (uu.params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Load) {
// 0th is ROI, 1st is input image
auto ii = uu.net.getInputsInfo().at(input_name);
configureInputInfo(ii, mm);
if (uu.params.layer_names_to_reshape.find(input_name) !=
uu.params.layer_names_to_reshape.end()) {
configureInputReshapeByImage(ii, mm, input_reshape_table);
}
ii->getPreProcess().setResizeAlgorithm(IE::RESIZE_BILINEAR);
// FIXME: This isn't the best place to call reshape function.
// Сorrect solution would be to do this in compile() method of network,
// but now input meta isn't passed to compile() method.
if (!input_reshape_table.empty()) {
const_cast<IE::CNNNetwork *>(&uu.net)->reshape(input_reshape_table);
}
} else {
GAPI_Assert(uu.params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Import);
auto inputs = uu.this_network.GetInputsInfo();
// FIXME: This isn't the best place to collect PreProcMap.
auto* non_const_prepm = const_cast<IEUnit::PreProcMap*>(&uu.preproc_map);
auto ii = inputs.at(input_name);
non_const_prepm->emplace(input_name, configurePreProcInfo(ii, mm));
}
// FIXME: It would be nice here to have an exact number of network's
// input/output parameters. Probably GCall should store it here for us.
// It doesn't, as far as I know..
for (const auto &out_name : uu.params.output_names) {
// NOTE: our output_names vector follows the API order
// of this operation's outputs
const auto& desc =
uu.params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Load
? uu.net.getOutputsInfo().at(out_name)->getTensorDesc()
: uu.this_network.GetOutputsInfo().at(out_name)->getTensorDesc();
cv::GMatDesc outm(toCV(desc.getPrecision()),
toCV(desc.getDims()));
result.emplace_back(outm);
}
return result;
}
static void run(std::shared_ptr<IECallContext> ctx,
cv::gimpl::ie::RequestPool &reqPool) {
using namespace std::placeholders;
reqPool.execute(
cv::gimpl::ie::RequestPool::Task {
[ctx](InferenceEngine::InferRequest &req) {
GAPI_Assert(ctx->uu.params.num_in == 1);
auto&& this_roi = ctx->inArg<cv::detail::OpaqueRef>(0).rref<cv::Rect>();
// NB: This blob will be used to make roi from its, so
// it should be treated as image
IE::Blob::Ptr this_blob =
extractBlob(*ctx, 1, cv::gapi::ie::TraitAs::IMAGE);
setBlob(req,
*(ctx->uu.params.input_names.begin()),
IE::make_shared_blob(this_blob, toIE(this_roi)),
*ctx);
// FIXME: Should it be done by kernel ?
// What about to do that in RequestPool ?
req.StartAsync();
},
std::bind(PostOutputs, _1, ctx)
}
);
}
};
struct InferList: public cv::detail::KernelTag {
using API = cv::GInferListBase;
static cv::gapi::GBackend backend() { return cv::gapi::ie::backend(); }
static KImpl kernel() { return KImpl{outMeta, run}; }
static cv::GMetaArgs outMeta(const ade::Graph &gr,
const ade::NodeHandle &nh,
const cv::GMetaArgs &in_metas,
const cv::GArgs &/*in_args*/) {
// Specify the input information to the IE from the framework
// NB: Have no clue if network's input [dimensions] may ever define
// its output dimensions. It seems possible with OpenCV DNN APIs
GConstGIEModel gm(gr);
const auto &uu = gm.metadata(nh).get<IEUnit>();
IE::ICNNNetwork::InputShapes input_reshape_table = uu.params.reshape_table;
// Initialize input information
// Note our input layers list order matches the API order and so
// meta order.
GAPI_Assert(uu.params.input_names.size() == (in_metas.size() - 1u)
&& "Known input layers count doesn't match input meta count");
// NB: Configuring input precision and network reshape must be done
// only in the loadNetwork case.
if (uu.params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Load) {
std::size_t idx = 1u;
auto inputs = uu.net.getInputsInfo();
for (auto &&input_name : uu.params.input_names) {
auto ii = inputs.at(input_name);
const auto & mm = in_metas[idx++];
configureInputInfo(ii, mm);
if (uu.params.layer_names_to_reshape.find(input_name) !=
uu.params.layer_names_to_reshape.end()) {
configureInputReshapeByImage(ii, mm, input_reshape_table);
}
ii->getPreProcess().setResizeAlgorithm(IE::RESIZE_BILINEAR);
}
// FIXME: This isn't the best place to call reshape function.
// Сorrect solution would be to do this in compile() method of network,
// but now input meta isn't passed to compile() method.
if (!input_reshape_table.empty()) {
const_cast<IE::CNNNetwork *>(&uu.net)->reshape(input_reshape_table);
}
} else {
GAPI_Assert(uu.params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Import);
std::size_t idx = 1u;
auto inputs = uu.this_network.GetInputsInfo();
auto* non_const_prepm = const_cast<IEUnit::PreProcMap*>(&uu.preproc_map);
for (auto &&input_name : uu.params.input_names) {
auto ii = inputs.at(input_name);
const auto & mm = in_metas[idx++];
non_const_prepm->emplace(input_name, configurePreProcInfo(ii, mm));
}
}
// roi-list version is much easier at the moment.
// All our outputs are vectors which don't have
// metadata at the moment - so just create a vector of
// "empty" array metadatas of the required size.
return cv::GMetaArgs(uu.params.output_names.size(),
cv::GMetaArg{cv::empty_array_desc()});
}
static void run(std::shared_ptr<IECallContext> ctx,
cv::gimpl::ie::RequestPool &reqPool) {
const auto& in_roi_vec = ctx->inArg<cv::detail::VectorRef>(0u).rref<cv::Rect>();
// NB: In case there is no input data need to post output anyway
if (in_roi_vec.empty()) {
for (auto i : ade::util::iota(ctx->uu.params.num_out)) {
auto output = ctx->output(i);
ctx->out.meta(output, ctx->input(0).meta);
ctx->out.post(std::move(output));
}
return;
}
// NB: This blob will be used to make roi from its, so
// it should be treated as image
IE::Blob::Ptr this_blob = extractBlob(*ctx, 1, cv::gapi::ie::TraitAs::IMAGE);
std::vector<std::vector<int>> cached_dims(ctx->uu.params.num_out);
for (auto i : ade::util::iota(ctx->uu.params.num_out)) {
const auto& out_name = ctx->uu.params.output_names[i];
const auto& desc =
ctx->uu.params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Load
? ctx->uu.net.getOutputsInfo().at(out_name)->getTensorDesc()
: ctx->uu.this_network.GetOutputsInfo().at(out_name)->getTensorDesc();
cached_dims[i] = toCV(desc.getDims());
// FIXME: Isn't this should be done automatically
// by some resetInternalData(), etc? (Probably at the GExecutor level)
auto& out_vec = ctx->outVecR<cv::Mat>(i);
out_vec.clear();
out_vec.resize(in_roi_vec.size());
}
PostOutputsList callback(in_roi_vec.size(), ctx, std::move(cached_dims));
for (auto&& it : ade::util::indexed(in_roi_vec)) {
auto pos = ade::util::index(it);
const auto& rc = ade::util::value(it);
reqPool.execute(
cv::gimpl::ie::RequestPool::Task {
[ctx, rc, this_blob](InferenceEngine::InferRequest &req) {
IE::Blob::Ptr roi_blob = IE::make_shared_blob(this_blob, toIE(rc));
setBlob(req, ctx->uu.params.input_names[0u], roi_blob, *ctx);
req.StartAsync();
},
std::bind(callback, std::placeholders::_1, pos)
}
);
}
}
};
struct InferList2: public cv::detail::KernelTag {
using API = cv::GInferList2Base;
static cv::gapi::GBackend backend() { return cv::gapi::ie::backend(); }
static KImpl kernel() { return KImpl{outMeta, run}; }
static cv::GMetaArgs outMeta(const ade::Graph &gr,
const ade::NodeHandle &nh,
const cv::GMetaArgs &in_metas,
const cv::GArgs &/*in_args*/) {
// Specify the input information to the IE from the framework
// NB: Have no clue if network's input [dimensions] may ever define
// its output dimensions. It seems possible with OpenCV DNN APIs
GConstGIEModel gm(gr);
const auto &uu = gm.metadata(nh).get<IEUnit>();
IE::ICNNNetwork::InputShapes input_reshape_table = uu.params.reshape_table;
// Initialize input information
// Note our input layers list order matches the API order and so
// meta order.
GAPI_Assert(uu.params.input_names.size() == (in_metas.size() - 1u)
&& "Known input layers count doesn't match input meta count");
const auto &op = gm.metadata(nh).get<Op>();
// In contrast to InferList, the InferList2 has only one
// "full-frame" image argument, and all the rest are arrays of
// ether ROI or blobs. So here we set the 0th arg image format
// to all inputs which are ROI-based (skipping the
// "blob"-based ones)
// FIXME: this is filtering not done, actually! GArrayDesc has
// no hint for its underlying type!
const auto &mm_0 = in_metas[0u];
switch (in_metas[0u].index()) {
case cv::GMetaArg::index_of<cv::GMatDesc>(): {
const auto &meta_0 = util::get<cv::GMatDesc>(mm_0);
GAPI_Assert( !meta_0.isND()
&& !meta_0.planar
&& "Only images are supported as the 0th argument");
break;
}
case cv::GMetaArg::index_of<cv::GFrameDesc>(): {
// FIXME: Is there any validation for GFrame ?
break;
}
default:
util::throw_error(std::runtime_error("Unsupported input meta for IE backend"));
}
if (util::holds_alternative<cv::GMatDesc>(mm_0)) {
const auto &meta_0 = util::get<cv::GMatDesc>(mm_0);
GAPI_Assert( !meta_0.isND()
&& !meta_0.planar
&& "Only images are supported as the 0th argument");
}
std::size_t idx = 1u;
for (auto &&input_name : uu.params.input_names) {
const auto &mm = in_metas[idx];
GAPI_Assert(util::holds_alternative<cv::GArrayDesc>(mm)
&& "Non-array inputs are not supported");
if (op.k.inKinds[idx] == cv::detail::OpaqueKind::CV_RECT) {
// NB: Configuring input precision and network reshape must be done
// only in the loadNetwork case.
if (uu.params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Load) {
// This is a cv::Rect -- configure the IE preprocessing
auto ii = uu.net.getInputsInfo().at(input_name);
configureInputInfo(ii, mm_0);
if (uu.params.layer_names_to_reshape.find(input_name) !=
uu.params.layer_names_to_reshape.end()) {
configureInputReshapeByImage(ii, mm_0, input_reshape_table);
}
ii->getPreProcess().setResizeAlgorithm(IE::RESIZE_BILINEAR);
// FIXME: This isn't the best place to call reshape function.
// Сorrect solution would be to do this in compile() method of network,
// but now input meta isn't passed to compile() method.
if (!input_reshape_table.empty()) {
const_cast<IE::CNNNetwork *>(&uu.net)->reshape(input_reshape_table);
}
} else {
GAPI_Assert(uu.params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Import);
auto inputs = uu.this_network.GetInputsInfo();
auto* non_const_prepm = const_cast<IEUnit::PreProcMap*>(&uu.preproc_map);
auto ii = inputs.at(input_name);
non_const_prepm->emplace(input_name, configurePreProcInfo(ii, mm_0));
}
} else {
// This is a cv::GMat (equals to: cv::Mat)
// Just validate that it is really the type
// (other types are prohibited here)
GAPI_Assert(op.k.inKinds[idx] == cv::detail::OpaqueKind::CV_MAT);
}
idx++; // NB: Never forget to increment the counter
}
// roi-list version is much easier at the moment.
// All our outputs are vectors which don't have
// metadata at the moment - so just create a vector of
// "empty" array metadatas of the required size.
return cv::GMetaArgs(uu.params.output_names.size(),
cv::GMetaArg{cv::empty_array_desc()});
}
static void run(std::shared_ptr<IECallContext> ctx,
cv::gimpl::ie::RequestPool &reqPool) {
GAPI_Assert(ctx->inArgs().size() > 1u
&& "This operation must have at least two arguments");
// NB: This blob will be used to make roi from its, so
// it should be treated as image
IE::Blob::Ptr blob_0 = extractBlob(*ctx, 0, cv::gapi::ie::TraitAs::IMAGE);
const auto list_size = ctx->inArg<cv::detail::VectorRef>(1u).size();
if (list_size == 0u) {
for (auto i : ade::util::iota(ctx->uu.params.num_out)) {
auto output = ctx->output(i);
ctx->out.meta(output, ctx->input(0).meta);
ctx->out.post(std::move(output));
}
return;
}
// FIXME: This could be done ONCE at graph compile stage!
std::vector< std::vector<int> > cached_dims(ctx->uu.params.num_out);
for (auto i : ade::util::iota(ctx->uu.params.num_out)) {
const auto& out_name = ctx->uu.params.output_names[i];
const auto& desc =
ctx->uu.params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Load
? ctx->uu.net.getOutputsInfo().at(out_name)->getTensorDesc()
: ctx->uu.this_network.GetOutputsInfo().at(out_name)->getTensorDesc();
cached_dims[i] = toCV(desc.getDims());
// FIXME: Isn't this should be done automatically
// by some resetInternalData(), etc? (Probably at the GExecutor level)
auto& out_vec = ctx->outVecR<cv::Mat>(i);
out_vec.clear();
out_vec.resize(list_size);
}
PostOutputsList callback(list_size, ctx, std::move(cached_dims));
for (const auto &list_idx : ade::util::iota(list_size)) {
reqPool.execute(
cv::gimpl::ie::RequestPool::Task {
[ctx, list_idx, list_size, blob_0](InferenceEngine::InferRequest &req) {
for (auto in_idx : ade::util::iota(ctx->uu.params.num_in)) {
const auto &this_vec = ctx->inArg<cv::detail::VectorRef>(in_idx+1u);
GAPI_Assert(this_vec.size() == list_size);
IE::Blob::Ptr this_blob;
if (this_vec.getKind() == cv::detail::OpaqueKind::CV_RECT) {
const auto &vec = this_vec.rref<cv::Rect>();
this_blob = IE::make_shared_blob(blob_0, toIE(vec[list_idx]));
} else if (this_vec.getKind() == cv::detail::OpaqueKind::CV_MAT) {
const auto &vec = this_vec.rref<cv::Mat>();
const auto &mat = vec[list_idx];
this_blob = wrapIE(mat, cv::gapi::ie::TraitAs::TENSOR);
} else {
GAPI_Assert(false &&
"Only Rect and Mat types are supported for infer list 2!");
}
setBlob(req, ctx->uu.params.input_names[in_idx], this_blob, *ctx);
}
req.StartAsync();
},
std::bind(callback, std::placeholders::_1, list_idx)
} // task
);
} // for
}
};
} // namespace ie
} // namespace gapi
} // namespace cv
// IE backend implementation of GBackend::Priv ///////////////////////
namespace {
class GIEBackendImpl final: public cv::gapi::GBackend::Priv {
virtual void unpackKernel(ade::Graph &gr,
const ade::NodeHandle &nh,
const cv::GKernelImpl &ii) override {
using namespace cv::gimpl;
// FIXME: Introduce a DNNBackend interface which'd specify
// the framework for this???
GIEModel gm(gr);
auto &np = gm.metadata(nh).get<NetworkParams>();
auto &pp = cv::util::any_cast<cv::gapi::ie::detail::ParamDesc>(np.opaque);
const auto &ki = cv::util::any_cast<KImpl>(ii.opaque);
GModel::Graph model(gr);
auto& op = model.metadata(nh).get<Op>();
// NB: In case generic infer, info about in/out names is stored in operation (op.params)
if (pp.is_generic)
{
auto& info = cv::util::any_cast<cv::detail::InOutInfo>(op.params);
pp.input_names = info.in_names;
pp.output_names = info.out_names;
pp.num_in = info.in_names.size();
pp.num_out = info.out_names.size();
}
gm.metadata(nh).set(IEUnit{pp});
gm.metadata(nh).set(IECallable{ki.run});
gm.metadata(nh).set(CustomMetaFunction{ki.customMetaFunc});
}
virtual EPtr compile(const ade::Graph &graph,
const cv::GCompileArgs &,
const std::vector<ade::NodeHandle> &nodes) const override {
return EPtr{new cv::gimpl::ie::GIEExecutable(graph, nodes)};
}
virtual cv::GKernelPackage auxiliaryKernels() const override {
return cv::gapi::kernels< cv::gimpl::ie::Infer
, cv::gimpl::ie::InferROI
, cv::gimpl::ie::InferList
, cv::gimpl::ie::InferList2
>();
}
virtual bool controlsMerge() const override {
return true;
}
virtual bool allowsMerge(const cv::gimpl::GIslandModel::Graph &,
const ade::NodeHandle &,
const ade::NodeHandle &,
const ade::NodeHandle &) const override {
return false;
}
};
}
cv::gapi::GBackend cv::gapi::ie::backend() {
static cv::gapi::GBackend this_backend(std::make_shared<GIEBackendImpl>());
return this_backend;
}
cv::Mat cv::gapi::ie::util::to_ocv(IE::Blob::Ptr blob) {
const auto& tdesc = blob->getTensorDesc();
return cv::Mat(toCV(tdesc.getDims()),
toCV(tdesc.getPrecision()),
blob->buffer().as<uint8_t*>());
}
std::vector<int> cv::gapi::ie::util::to_ocv(const IE::SizeVector &dims) {
return toCV(dims);
}
IE::Blob::Ptr cv::gapi::ie::util::to_ie(const cv::Mat &blob) {
return wrapIE(blob, cv::gapi::ie::TraitAs::IMAGE);
}
IE::Blob::Ptr cv::gapi::ie::util::to_ie(const cv::Mat &y_plane, const cv::Mat &uv_plane) {
auto y_blob = wrapIE(y_plane, cv::gapi::ie::TraitAs::IMAGE);
auto uv_blob = wrapIE(uv_plane, cv::gapi::ie::TraitAs::IMAGE);
#if INF_ENGINE_RELEASE >= 2021010000
return IE::make_shared_blob<IE::NV12Blob>(y_blob, uv_blob);
#else
return IE::make_shared_blob<InferenceEngine::NV12Blob>(y_blob, uv_blob);
#endif
}
#else // HAVE_INF_ENGINE
cv::gapi::GBackend cv::gapi::ie::backend() {
// Still provide this symbol to avoid linking issues
util::throw_error(std::runtime_error("G-API has been compiled without OpenVINO IE support"));
}
#endif // HAVE_INF_ENGINE