mirror of
https://github.com/opencv/opencv.git
synced 2025-06-13 04:52:53 +08:00
1517 lines
62 KiB
C++
1517 lines
62 KiB
C++
// This file is part of OpenCV project.
|
||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||
// of this distribution and at http://opencv.org/license.html.
|
||
//
|
||
// Copyright (C) 2018-2021 Intel Corporation
|
||
|
||
#include "precomp.hpp"
|
||
|
||
// needs to be included regardless if IE is present or not
|
||
// (cv::gapi::ie::backend() is still there and is defined always)
|
||
#include "backends/ie/giebackend.hpp"
|
||
|
||
#ifdef HAVE_INF_ENGINE
|
||
|
||
#if INF_ENGINE_RELEASE <= 2019010000
|
||
# error G-API IE module supports only OpenVINO IE >= 2019 R1
|
||
#endif
|
||
|
||
#include <functional>
|
||
#include <unordered_set>
|
||
#include <atomic>
|
||
|
||
#include <ade/util/algorithm.hpp>
|
||
|
||
#include <ade/util/range.hpp>
|
||
#include <ade/util/zip_range.hpp>
|
||
#include <ade/util/chain_range.hpp>
|
||
#include <ade/typed_graph.hpp>
|
||
|
||
#include <opencv2/core/utility.hpp>
|
||
#include <opencv2/core/utils/logger.hpp>
|
||
|
||
#include <opencv2/gapi/gcommon.hpp>
|
||
#include <opencv2/gapi/garray.hpp>
|
||
#include <opencv2/gapi/gopaque.hpp>
|
||
#include <opencv2/gapi/util/any.hpp>
|
||
#include <opencv2/gapi/gtype_traits.hpp>
|
||
#include <opencv2/gapi/infer.hpp>
|
||
#include <opencv2/gapi/own/convert.hpp>
|
||
#include <opencv2/gapi/gframe.hpp>
|
||
|
||
#include "compiler/gobjref.hpp"
|
||
#include "compiler/gmodel.hpp"
|
||
|
||
#include "backends/ie/util.hpp"
|
||
#include "backends/ie/giebackend/giewrapper.hpp"
|
||
|
||
#include "api/gbackend_priv.hpp" // FIXME: Make it part of Backend SDK!
|
||
#include "logger.hpp"
|
||
|
||
#if INF_ENGINE_RELEASE < 2021010000
|
||
#include "ie_compound_blob.h"
|
||
#endif
|
||
|
||
#if defined(HAVE_TBB)
|
||
# include <tbb/concurrent_queue.h> // FIXME: drop it from here!
|
||
template<typename T> using QueueClass = tbb::concurrent_bounded_queue<T>;
|
||
#else
|
||
# include "executor/conc_queue.hpp"
|
||
template<typename T> using QueueClass = cv::gapi::own::concurrent_bounded_queue<T>;
|
||
#endif // TBB
|
||
|
||
#include "utils/itt.hpp"
|
||
|
||
namespace IE = InferenceEngine;
|
||
|
||
namespace {
|
||
|
||
inline IE::ROI toIE(const cv::Rect &rc) {
|
||
return IE::ROI
|
||
{ 0u
|
||
, static_cast<std::size_t>(rc.x)
|
||
, static_cast<std::size_t>(rc.y)
|
||
, static_cast<std::size_t>(rc.width)
|
||
, static_cast<std::size_t>(rc.height)
|
||
};
|
||
}
|
||
|
||
inline IE::SizeVector toIE(const cv::MatSize &sz) {
|
||
return cv::to_own<IE::SizeVector::value_type>(sz);
|
||
}
|
||
inline std::vector<int> toCV(const IE::SizeVector &vsz) {
|
||
std::vector<int> result;
|
||
result.reserve(vsz.size());
|
||
for (auto sz : vsz) {
|
||
result.push_back(ade::util::checked_cast<int>(sz));
|
||
}
|
||
return result;
|
||
}
|
||
|
||
inline IE::Layout toIELayout(const std::size_t ndims) {
|
||
static const IE::Layout lts[] = {
|
||
IE::Layout::SCALAR,
|
||
IE::Layout::C,
|
||
IE::Layout::NC,
|
||
IE::Layout::CHW,
|
||
IE::Layout::NCHW,
|
||
IE::Layout::NCDHW,
|
||
};
|
||
// FIXME: This is not really a good conversion,
|
||
// since it may also stand for NHWC/HW/CN/NDHWC data
|
||
CV_Assert(ndims < sizeof(lts) / sizeof(lts[0]));
|
||
return lts[ndims];
|
||
}
|
||
|
||
inline IE::Precision toIE(int depth) {
|
||
switch (depth) {
|
||
case CV_8U: return IE::Precision::U8;
|
||
case CV_32S: return IE::Precision::I32;
|
||
case CV_32F: return IE::Precision::FP32;
|
||
case CV_16F: return IE::Precision::FP16;
|
||
default: GAPI_Assert(false && "IE. Unsupported data type");
|
||
}
|
||
return IE::Precision::UNSPECIFIED;
|
||
}
|
||
inline int toCV(IE::Precision prec) {
|
||
switch (prec) {
|
||
case IE::Precision::U8: return CV_8U;
|
||
case IE::Precision::FP32: return CV_32F;
|
||
case IE::Precision::I32: return CV_32S;
|
||
case IE::Precision::I64: return CV_32S;
|
||
case IE::Precision::FP16: return CV_16F;
|
||
default: GAPI_Assert(false && "IE. Unsupported data type");
|
||
}
|
||
return -1;
|
||
}
|
||
|
||
inline IE::TensorDesc toIE(const cv::Mat &mat, cv::gapi::ie::TraitAs hint) {
|
||
const auto &sz = mat.size;
|
||
// NB: For some reason RGB image is 2D image
|
||
// (since channel component is not counted here).
|
||
// Note: regular 2D vectors also fall into this category
|
||
if (sz.dims() == 2 && hint == cv::gapi::ie::TraitAs::IMAGE)
|
||
{
|
||
// NB: This logic is mainly taken from IE samples
|
||
const size_t channels = mat.channels();
|
||
const size_t height = mat.size().height;
|
||
const size_t width = mat.size().width;
|
||
|
||
const size_t strideH = mat.step1();
|
||
IE::BlockingDesc bdesc({1, height, width, channels} /* blocking dims */,
|
||
{0, 2, 3, 1} /* order for NHWC */,
|
||
0 /* offset */,
|
||
{0, 0, 0, 0} /* offsets for dims */,
|
||
{strideH * height, strideH, channels, 1} /* strides for dims */);
|
||
|
||
return IE::TensorDesc(toIE(mat.depth()),
|
||
IE::SizeVector{1, channels, height, width}, bdesc);
|
||
}
|
||
return IE::TensorDesc(toIE(mat.depth()), toIE(sz), toIELayout(sz.dims()));
|
||
}
|
||
|
||
inline IE::Blob::Ptr wrapIE(const cv::Mat &mat, cv::gapi::ie::TraitAs hint) {
|
||
const auto tDesc = toIE(mat, hint);
|
||
switch (mat.depth()) {
|
||
// NB: Seems there's no way to create an untyped (T-less) Blob::Ptr
|
||
// in IE given only precision via TensorDesc. So we have to do this:
|
||
#define HANDLE(E,T) \
|
||
case CV_##E: return IE::make_shared_blob<T>(tDesc, const_cast<T*>(mat.ptr<T>()))
|
||
HANDLE(8U, uint8_t);
|
||
HANDLE(32F, float);
|
||
HANDLE(32S, int);
|
||
HANDLE(16F, int16_t);
|
||
#undef HANDLE
|
||
default: GAPI_Assert(false && "IE. Unsupported data type");
|
||
}
|
||
return IE::Blob::Ptr{};
|
||
}
|
||
|
||
inline IE::Blob::Ptr wrapIE(const cv::MediaFrame::View& view,
|
||
const cv::GFrameDesc& desc) {
|
||
|
||
switch (desc.fmt) {
|
||
case cv::MediaFormat::BGR: {
|
||
auto bgr = cv::Mat(desc.size, CV_8UC3, view.ptr[0], view.stride[0]);
|
||
return wrapIE(bgr, cv::gapi::ie::TraitAs::IMAGE);
|
||
}
|
||
case cv::MediaFormat::NV12: {
|
||
auto y_plane = cv::Mat(desc.size, CV_8UC1, view.ptr[0], view.stride[0]);
|
||
auto uv_plane = cv::Mat(desc.size / 2, CV_8UC2, view.ptr[1], view.stride[1]);
|
||
return cv::gapi::ie::util::to_ie(y_plane, uv_plane);
|
||
}
|
||
default:
|
||
GAPI_Assert(false && "Unsupported media format for IE backend");
|
||
}
|
||
GAPI_Assert(false);
|
||
}
|
||
|
||
template<class MatType>
|
||
inline void copyFromIE(const IE::Blob::Ptr &blob, MatType &mat) {
|
||
switch (blob->getTensorDesc().getPrecision()) {
|
||
#define HANDLE(E,T) \
|
||
case IE::Precision::E: std::copy_n(blob->buffer().as<T*>(), \
|
||
mat.total(), \
|
||
reinterpret_cast<T*>(mat.data)); \
|
||
break;
|
||
HANDLE(U8, uint8_t);
|
||
HANDLE(FP32, float);
|
||
HANDLE(I32, int);
|
||
HANDLE(FP16, cv::float16_t);
|
||
#undef HANDLE
|
||
case IE::Precision::I64: {
|
||
GAPI_LOG_WARNING(NULL, "INT64 isn't supported for cv::Mat. Conversion to INT32 is used.");
|
||
cv::gimpl::convertInt64ToInt32(blob->buffer().as<int64_t*>(),
|
||
reinterpret_cast<int*>(mat.data),
|
||
mat.total());
|
||
break;
|
||
}
|
||
default: GAPI_Assert(false && "IE. Unsupported data type");
|
||
}
|
||
}
|
||
|
||
// IE-specific metadata, represents a network with its parameters
|
||
struct IEUnit {
|
||
static const char *name() { return "IEModelConfig"; }
|
||
|
||
cv::gapi::ie::detail::ParamDesc params;
|
||
IE::CNNNetwork net;
|
||
|
||
IE::ExecutableNetwork this_network;
|
||
cv::gimpl::ie::wrap::Plugin this_plugin;
|
||
|
||
InferenceEngine::RemoteContext::Ptr rctx = nullptr;
|
||
|
||
// FIXME: Unlike loadNetwork case, importNetwork requires that preprocessing
|
||
// should be passed as ExecutableNetwork::SetBlob method, so need to collect
|
||
// and store this information at the graph compilation stage (outMeta) and use in runtime.
|
||
using PreProcMap = std::unordered_map<std::string, IE::PreProcessInfo>;
|
||
PreProcMap preproc_map;
|
||
|
||
explicit IEUnit(const cv::gapi::ie::detail::ParamDesc &pp)
|
||
: params(pp) {
|
||
InferenceEngine::ParamMap* ctx_params =
|
||
cv::util::any_cast<InferenceEngine::ParamMap>(¶ms.context_config);
|
||
if (ctx_params != nullptr) {
|
||
auto ie_core = cv::gimpl::ie::wrap::getCore();
|
||
rctx = ie_core.CreateContext(params.device_id, *ctx_params);
|
||
}
|
||
|
||
if (params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Load) {
|
||
net = cv::gimpl::ie::wrap::readNetwork(params);
|
||
// NB: Set batch size only if user asked. (don't set by default)
|
||
if (params.batch_size.has_value()) {
|
||
net.setBatchSize(params.batch_size.value());
|
||
}
|
||
} else if (params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Import) {
|
||
this_plugin = cv::gimpl::ie::wrap::getPlugin(params);
|
||
this_network = cv::gimpl::ie::wrap::importNetwork(this_plugin, params, rctx);
|
||
if (!params.reshape_table.empty() || !params.layer_names_to_reshape.empty()) {
|
||
GAPI_LOG_WARNING(NULL, "Reshape isn't supported for imported network");
|
||
}
|
||
} else {
|
||
cv::util::throw_error(std::logic_error("Unsupported ParamDesc::Kind"));
|
||
}
|
||
|
||
// The practice shows that not all inputs and not all outputs
|
||
// are mandatory to specify in IE model.
|
||
// So what we're concerned here about is:
|
||
// if operation's (not topology's) input/output number is
|
||
// greater than 1, then we do care about input/output layer
|
||
// names. Otherwise, names are picked up automatically.
|
||
// TODO: Probably this check could be done at the API entry point? (gnet)
|
||
if (params.num_in > 1u && params.num_in != params.input_names.size()) {
|
||
cv::util::throw_error(std::logic_error("Please specify input layer names for "
|
||
+ params.model_path));
|
||
}
|
||
if (params.num_out > 1u && params.num_out != params.output_names.size()) {
|
||
cv::util::throw_error(std::logic_error("Please specify output layer names for "
|
||
+ params.model_path));
|
||
}
|
||
if (params.num_in == 1u && params.input_names.empty()) {
|
||
if (params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Load) {
|
||
params.input_names = { net.getInputsInfo().begin()->first };
|
||
} else {
|
||
params.input_names = { this_network.GetInputsInfo().begin()->first };
|
||
}
|
||
}
|
||
if (params.num_out == 1u && params.output_names.empty()) {
|
||
if (params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Load) {
|
||
params.output_names = { net.getOutputsInfo().begin()->first };
|
||
} else {
|
||
params.output_names = { this_network.GetOutputsInfo().begin()->first };
|
||
}
|
||
}
|
||
if (!params.reshape_table.empty()) {
|
||
GAPI_Assert((params.reshape_table.size() + params.layer_names_to_reshape.size()) <=
|
||
params.num_in &&
|
||
"Number of layers to reshape must be less than or equal to number of inputs");
|
||
}
|
||
}
|
||
|
||
// This method is [supposed to be] called at Island compilation stage
|
||
cv::gimpl::ie::IECompiled compile() const {
|
||
IEUnit* non_const_this = const_cast<IEUnit*>(this);
|
||
// FIXME: LoadNetwork must be called only after all necessary model
|
||
// inputs information is set, since it's done in outMeta and compile called after that,
|
||
// this place seems to be suitable, but consider another place not to break const agreements.
|
||
if (params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Load) {
|
||
non_const_this->this_plugin = cv::gimpl::ie::wrap::getPlugin(params);
|
||
non_const_this->this_network = cv::gimpl::ie::wrap::loadNetwork(non_const_this->this_plugin,
|
||
net, params, rctx);
|
||
}
|
||
|
||
return {params, this_plugin, this_network};
|
||
}
|
||
};
|
||
|
||
class IECallContext
|
||
{
|
||
public:
|
||
IECallContext(const IEUnit & unit,
|
||
cv::gimpl::GIslandExecutable::IOutput & output,
|
||
const cv::GArgs & args,
|
||
const std::vector<cv::gimpl::RcDesc> & outs,
|
||
std::vector<cv::gimpl::GIslandExecutable::InObj> && input_objs,
|
||
std::vector<cv::gimpl::GIslandExecutable::OutObj> && output_objs);
|
||
|
||
const cv::GArgs& inArgs() const;
|
||
|
||
// Generic accessor API
|
||
template<typename T>
|
||
const T& inArg(std::size_t input) const {
|
||
return m_args.at(input).get<T>();
|
||
}
|
||
|
||
template<typename T>
|
||
std::vector<T>& outVecR(std::size_t output) {
|
||
return outVecRef(output).wref<T>();
|
||
}
|
||
|
||
// Syntax sugar
|
||
cv::GShape inShape(std::size_t input) const;
|
||
const cv::Mat& inMat (std::size_t input) const;
|
||
const cv::MediaFrame& inFrame(std::size_t input) const;
|
||
|
||
const cv::GRunArg& input (std::size_t idx) const;
|
||
cv::GRunArgP output (std::size_t idx);
|
||
cv::Mat& outMatR(std::size_t idx);
|
||
|
||
const IEUnit &uu;
|
||
cv::gimpl::GIslandExecutable::IOutput &out;
|
||
|
||
// NB: Need to gurantee that MediaFrame::View don't die until request is over.
|
||
using Views = std::vector<std::unique_ptr<cv::MediaFrame::View>>;
|
||
Views views;
|
||
|
||
private:
|
||
cv::detail::VectorRef& outVecRef(std::size_t idx);
|
||
|
||
cv::GArg packArg(const cv::GArg &arg);
|
||
|
||
// To store input/output data from frames
|
||
std::vector<cv::gimpl::GIslandExecutable::InObj> m_input_objs;
|
||
std::vector<cv::gimpl::GIslandExecutable::OutObj> m_output_objs;
|
||
|
||
// To simplify access to cv::Mat inside cv::RMat
|
||
cv::gimpl::Mag m_res;
|
||
|
||
// FIXME: avoid conversion of arguments from internal representation to OpenCV one on each call
|
||
//to OCV kernel. (This can be achieved by a two single time conversions in GCPUExecutable::run,
|
||
//once on enter for input and output arguments, and once before return for output arguments only
|
||
// FIXME: check if the above applies to this backend (taken from CPU)
|
||
std::unordered_map<std::size_t, cv::GRunArgP> m_results;
|
||
|
||
// Input parameters passed to an inference operation.
|
||
cv::GArgs m_args;
|
||
cv::GShapes m_in_shapes;
|
||
};
|
||
|
||
IECallContext::IECallContext(const IEUnit & unit,
|
||
cv::gimpl::GIslandExecutable::IOutput & output,
|
||
const cv::GArgs & args,
|
||
const std::vector<cv::gimpl::RcDesc> & outs,
|
||
std::vector<cv::gimpl::GIslandExecutable::InObj> && input_objs,
|
||
std::vector<cv::gimpl::GIslandExecutable::OutObj> && output_objs)
|
||
: uu(unit), out(output), m_input_objs(std::move(input_objs)), m_output_objs(std::move(output_objs))
|
||
{
|
||
for (auto& it : m_input_objs) cv::gimpl::magazine::bindInArg (m_res, it.first, it.second);
|
||
for (auto& it : m_output_objs) cv::gimpl::magazine::bindOutArg(m_res, it.first, it.second);
|
||
|
||
m_args.reserve(args.size());
|
||
using namespace std::placeholders;
|
||
ade::util::transform(args,
|
||
std::back_inserter(m_args),
|
||
std::bind(&IECallContext::packArg, this, _1));
|
||
|
||
ade::util::transform(args, std::back_inserter(m_in_shapes),
|
||
[](const cv::GArg& arg) {
|
||
return arg.get<cv::gimpl::RcDesc>().shape;
|
||
});
|
||
|
||
for (const auto out_it : ade::util::indexed(outs)) {
|
||
// FIXME: Can the same GArg type resolution mechanism be reused here?
|
||
const auto port = ade::util::index(out_it);
|
||
const auto desc = ade::util::value(out_it);
|
||
m_results[port] = cv::gimpl::magazine::getObjPtr(m_res, desc);
|
||
}
|
||
}
|
||
|
||
const cv::GArgs& IECallContext::inArgs() const {
|
||
return m_args;
|
||
}
|
||
|
||
cv::GShape IECallContext::inShape(std::size_t i) const {
|
||
return m_in_shapes[i];
|
||
}
|
||
|
||
const cv::Mat& IECallContext::inMat(std::size_t input) const {
|
||
return inArg<cv::Mat>(input);
|
||
}
|
||
|
||
const cv::MediaFrame& IECallContext::inFrame(std::size_t input) const {
|
||
return inArg<cv::MediaFrame>(input);
|
||
}
|
||
|
||
cv::Mat& IECallContext::outMatR(std::size_t idx) {
|
||
return *cv::util::get<cv::Mat*>(m_results.at(idx));
|
||
}
|
||
|
||
cv::GRunArgP IECallContext::output(std::size_t idx) {
|
||
return m_output_objs[idx].second;
|
||
};
|
||
|
||
const cv::GRunArg& IECallContext::input(std::size_t idx) const {
|
||
return m_input_objs[idx].second;
|
||
}
|
||
|
||
cv::detail::VectorRef& IECallContext::outVecRef(std::size_t idx) {
|
||
return cv::util::get<cv::detail::VectorRef>(m_results.at(idx));
|
||
}
|
||
|
||
cv::GArg IECallContext::packArg(const cv::GArg &arg) {
|
||
// No API placeholders allowed at this point
|
||
// FIXME: this check has to be done somewhere in compilation stage.
|
||
GAPI_Assert( arg.kind != cv::detail::ArgKind::GMAT
|
||
&& arg.kind != cv::detail::ArgKind::GSCALAR
|
||
&& arg.kind != cv::detail::ArgKind::GARRAY);
|
||
|
||
if (arg.kind != cv::detail::ArgKind::GOBJREF) {
|
||
cv::util::throw_error(std::logic_error("Inference supports G-types ONLY!"));
|
||
}
|
||
GAPI_Assert(arg.kind == cv::detail::ArgKind::GOBJREF);
|
||
|
||
// Wrap associated CPU object (either host or an internal one)
|
||
// FIXME: object can be moved out!!! GExecutor faced that.
|
||
const cv::gimpl::RcDesc &ref = arg.get<cv::gimpl::RcDesc>();
|
||
switch (ref.shape)
|
||
{
|
||
case cv::GShape::GMAT: return cv::GArg(m_res.slot<cv::Mat>()[ref.id]);
|
||
|
||
// Note: .at() is intentional for GArray as object MUST be already there
|
||
// (and constructed by either bindIn/Out or resetInternal)
|
||
case cv::GShape::GARRAY: return cv::GArg(m_res.slot<cv::detail::VectorRef>().at(ref.id));
|
||
|
||
// Note: .at() is intentional for GOpaque as object MUST be already there
|
||
// (and constructed by either bindIn/Out or resetInternal)
|
||
case cv::GShape::GOPAQUE: return cv::GArg(m_res.slot<cv::detail::OpaqueRef>().at(ref.id));
|
||
|
||
case cv::GShape::GFRAME: return cv::GArg(m_res.slot<cv::MediaFrame>().at(ref.id));
|
||
|
||
default:
|
||
cv::util::throw_error(std::logic_error("Unsupported GShape type"));
|
||
break;
|
||
}
|
||
}
|
||
|
||
struct IECallable {
|
||
static const char *name() { return "IERequestCallable"; }
|
||
using Run = std::function<void(std::shared_ptr<IECallContext>, cv::gimpl::ie::RequestPool&)>;
|
||
Run run;
|
||
};
|
||
|
||
struct KImpl {
|
||
cv::gimpl::CustomMetaFunction::CM customMetaFunc;
|
||
IECallable::Run run;
|
||
};
|
||
|
||
// FIXME: Is there a way to take a typed graph (our GModel),
|
||
// and create a new typed graph _ATOP_ of that (by extending with a couple of
|
||
// new types?).
|
||
// Alternatively, is there a way to compose types graphs?
|
||
//
|
||
// If not, we need to introduce that!
|
||
using GIEModel = ade::TypedGraph
|
||
< cv::gimpl::Protocol
|
||
, cv::gimpl::Op
|
||
, cv::gimpl::NetworkParams
|
||
, cv::gimpl::CustomMetaFunction
|
||
, IEUnit
|
||
, IECallable
|
||
>;
|
||
|
||
// FIXME: Same issue with Typed and ConstTyped
|
||
using GConstGIEModel = ade::ConstTypedGraph
|
||
< cv::gimpl::Protocol
|
||
, cv::gimpl::Op
|
||
, cv::gimpl::NetworkParams
|
||
, cv::gimpl::CustomMetaFunction
|
||
, IEUnit
|
||
, IECallable
|
||
>;
|
||
|
||
inline IE::Blob::Ptr extractRemoteBlob(IECallContext& ctx, std::size_t i) {
|
||
GAPI_Assert(ctx.inShape(i) == cv::GShape::GFRAME &&
|
||
"Remote blob is supported for MediaFrame only");
|
||
|
||
cv::util::any any_blob_params = ctx.inFrame(i).blobParams();
|
||
auto ie_core = cv::gimpl::ie::wrap::getCore();
|
||
|
||
using ParamType = std::pair<InferenceEngine::TensorDesc,
|
||
InferenceEngine::ParamMap>;
|
||
|
||
ParamType* blob_params = cv::util::any_cast<ParamType>(&any_blob_params);
|
||
if (blob_params == nullptr) {
|
||
GAPI_Assert(false && "Incorrect type of blobParams: "
|
||
"expected std::pair<InferenceEngine::TensorDesc,"
|
||
"InferenceEngine::ParamMap>");
|
||
}
|
||
|
||
return ctx.uu.rctx->CreateBlob(blob_params->first,
|
||
blob_params->second);
|
||
}
|
||
|
||
inline IE::Blob::Ptr extractBlob(IECallContext& ctx,
|
||
std::size_t i,
|
||
cv::gapi::ie::TraitAs hint) {
|
||
if (ctx.uu.rctx != nullptr) {
|
||
return extractRemoteBlob(ctx, i);
|
||
}
|
||
|
||
switch (ctx.inShape(i)) {
|
||
case cv::GShape::GFRAME: {
|
||
const auto& frame = ctx.inFrame(i);
|
||
ctx.views.emplace_back(new cv::MediaFrame::View(frame.access(cv::MediaFrame::Access::R)));
|
||
return wrapIE(*(ctx.views.back()), frame.desc());
|
||
}
|
||
case cv::GShape::GMAT: {
|
||
return wrapIE(ctx.inMat(i), hint);
|
||
}
|
||
default:
|
||
GAPI_Assert("Unsupported input shape for IE backend");
|
||
}
|
||
GAPI_Assert(false);
|
||
}
|
||
|
||
|
||
static void setBlob(InferenceEngine::InferRequest& req,
|
||
const std::string& layer_name,
|
||
const IE::Blob::Ptr& blob,
|
||
const IECallContext& ctx) {
|
||
// TODO: Ideally we shouldn't do SetBlob() but GetBlob() instead,
|
||
// and redirect our data producers to this memory
|
||
// (A memory dialog comes to the picture again)
|
||
using namespace cv::gapi::ie::detail;
|
||
if (ctx.uu.params.kind == ParamDesc::Kind::Load) {
|
||
req.SetBlob(layer_name, blob);
|
||
} else {
|
||
GAPI_Assert(ctx.uu.params.kind == ParamDesc::Kind::Import);
|
||
req.SetBlob(layer_name, blob, ctx.uu.preproc_map.at(layer_name));
|
||
}
|
||
}
|
||
|
||
} // anonymous namespace
|
||
|
||
std::vector<InferenceEngine::InferRequest> cv::gimpl::ie::IECompiled::createInferRequests() {
|
||
std::vector<InferenceEngine::InferRequest> requests;
|
||
requests.reserve(params.nireq);
|
||
|
||
for (size_t i = 0; i < params.nireq; ++i) {
|
||
requests.push_back(this_network.CreateInferRequest());
|
||
auto& request = requests.back();
|
||
// Bind const data to infer request
|
||
for (auto &&p : params.const_inputs) {
|
||
// FIXME: SetBlob is known to be inefficient,
|
||
// it is worth to make a customizable "initializer" and pass the
|
||
// cv::Mat-wrapped blob there to support IE's optimal "GetBlob idiom"
|
||
// Still, constant data is to set only once.
|
||
request.SetBlob(p.first, wrapIE(p.second.first, p.second.second));
|
||
}
|
||
}
|
||
|
||
return requests;
|
||
}
|
||
|
||
class cv::gimpl::ie::RequestPool {
|
||
public:
|
||
using RunF = std::function<void(InferenceEngine::InferRequest&)>;
|
||
using CallbackF = std::function<void(InferenceEngine::InferRequest&)>;
|
||
|
||
// NB: The task is represented by:
|
||
// RunF - function which is set blobs and run async inference.
|
||
// CallbackF - function which is obtain output blobs and post it to output.
|
||
struct Task {
|
||
RunF run;
|
||
CallbackF callback;
|
||
};
|
||
|
||
explicit RequestPool(std::vector<InferenceEngine::InferRequest>&& requests);
|
||
|
||
void execute(Task&& t);
|
||
void waitAll();
|
||
|
||
private:
|
||
void callback(Task task, InferenceEngine::InferRequest& request, size_t id);
|
||
void setup();
|
||
|
||
QueueClass<size_t> m_idle_ids;
|
||
std::vector<InferenceEngine::InferRequest> m_requests;
|
||
};
|
||
|
||
// RequestPool implementation //////////////////////////////////////////////
|
||
cv::gimpl::ie::RequestPool::RequestPool(std::vector<InferenceEngine::InferRequest>&& requests)
|
||
: m_requests(std::move(requests)) {
|
||
setup();
|
||
}
|
||
|
||
void cv::gimpl::ie::RequestPool::setup() {
|
||
for (size_t i = 0; i < m_requests.size(); ++i) {
|
||
m_idle_ids.push(i);
|
||
}
|
||
}
|
||
|
||
void cv::gimpl::ie::RequestPool::execute(cv::gimpl::ie::RequestPool::Task&& t) {
|
||
size_t id = 0u;
|
||
m_idle_ids.pop(id);
|
||
|
||
auto& request = m_requests[id];
|
||
|
||
request.SetCompletionCallback(
|
||
std::bind(&cv::gimpl::ie::RequestPool::callback, this, t, std::ref(request), id));
|
||
t.run(request);
|
||
}
|
||
|
||
void cv::gimpl::ie::RequestPool::callback(cv::gimpl::ie::RequestPool::Task task,
|
||
InferenceEngine::InferRequest& request,
|
||
size_t id) {
|
||
task.callback(request);
|
||
// NB: IE::InferRequest keeps the callback until the new one is set.
|
||
// Since user's callback might keep resources that should be released,
|
||
// need to destroy its after execution.
|
||
// Let's set the empty one to cause the destruction of a callback.
|
||
request.SetCompletionCallback([](){});
|
||
m_idle_ids.push(id);
|
||
}
|
||
|
||
// NB: Not thread-safe.
|
||
void cv::gimpl::ie::RequestPool::waitAll() {
|
||
// NB: It will be blocked if at least one request is busy.
|
||
for (size_t i = 0; i < m_requests.size(); ++i) {
|
||
size_t id = 0u;
|
||
m_idle_ids.pop(id);
|
||
}
|
||
setup();
|
||
}
|
||
|
||
// GCPUExcecutable implementation //////////////////////////////////////////////
|
||
cv::gimpl::ie::GIEExecutable::GIEExecutable(const ade::Graph &g,
|
||
const std::vector<ade::NodeHandle> &nodes)
|
||
: m_g(g), m_gm(m_g) {
|
||
// FIXME: Currently this backend is capable to run a single inference node only.
|
||
// Need to extend our island fusion with merge/not-to-merge decision making parametrization
|
||
GConstGIEModel iem(g);
|
||
|
||
for (auto &nh : nodes) {
|
||
switch (m_gm.metadata(nh).get<NodeType>().t) {
|
||
case NodeType::OP:
|
||
if (this_nh == nullptr) {
|
||
this_nh = nh;
|
||
this_iec = iem.metadata(this_nh).get<IEUnit>().compile();
|
||
m_reqPool.reset(new RequestPool(this_iec.createInferRequests()));
|
||
}
|
||
else
|
||
util::throw_error(std::logic_error("Multi-node inference is not supported!"));
|
||
break;
|
||
|
||
case NodeType::DATA: {
|
||
m_dataNodes.push_back(nh);
|
||
const auto &desc = m_gm.metadata(nh).get<Data>();
|
||
if (desc.storage == Data::Storage::CONST_VAL) {
|
||
util::throw_error(std::logic_error("No const data please!"));
|
||
}
|
||
if (desc.storage == Data::Storage::INTERNAL) {
|
||
util::throw_error(std::logic_error("No internal data please!"));
|
||
}
|
||
break;
|
||
}
|
||
default: util::throw_error(std::logic_error("Unsupported NodeType type"));
|
||
}
|
||
}
|
||
}
|
||
|
||
void cv::gimpl::ie::GIEExecutable::run(cv::gimpl::GIslandExecutable::IInput &in,
|
||
cv::gimpl::GIslandExecutable::IOutput &out) {
|
||
// General alghoritm:
|
||
// 1. Collect island inputs/outputs.
|
||
// 2. Create kernel context. (Every kernel has his own context).
|
||
// 3. If the EndOfStream message is recieved, wait until all passed task are done.
|
||
// 4.
|
||
// 5.1 Run the kernel.
|
||
// 5.2 Kernel wait for all nececcary infer requests and start asynchronous execution.
|
||
// 5.3 After the kernel is finished continue processing next frame.
|
||
//
|
||
// 5. If graph is compiled in non-streaming mode, wait until all tasks are done.
|
||
|
||
std::vector<InObj> input_objs;
|
||
std::vector<OutObj> output_objs;
|
||
|
||
const auto &in_desc = in.desc();
|
||
const auto in_msg = in.get();
|
||
|
||
if (cv::util::holds_alternative<cv::gimpl::EndOfStream>(in_msg))
|
||
{
|
||
// (3) Wait until all passed task are done.
|
||
m_reqPool->waitAll();
|
||
out.post(cv::gimpl::EndOfStream{});
|
||
return;
|
||
}
|
||
|
||
GAPI_Assert(cv::util::holds_alternative<cv::GRunArgs>(in_msg));
|
||
const auto in_vector = cv::util::get<cv::GRunArgs>(in_msg);
|
||
|
||
// (1) Collect island inputs/outputs
|
||
input_objs.reserve(in_desc.size());
|
||
for (auto &&it: ade::util::zip(ade::util::toRange(in_desc),
|
||
ade::util::toRange(in_vector)))
|
||
{
|
||
input_objs.emplace_back(std::get<0>(it), std::get<1>(it));
|
||
}
|
||
|
||
const auto &out_desc = out.desc();
|
||
output_objs.reserve(out_desc.size());
|
||
for (auto &&it: ade::util::indexed(ade::util::toRange(out_desc)))
|
||
{
|
||
output_objs.emplace_back(ade::util::value(it),
|
||
out.get(ade::util::checked_cast<int>(ade::util::index(it))));
|
||
}
|
||
|
||
GConstGIEModel giem(m_g);
|
||
const auto &uu = giem.metadata(this_nh).get<IEUnit>();
|
||
const auto &op = m_gm.metadata(this_nh).get<Op>();
|
||
// (2) Create kernel context
|
||
auto ctx = std::make_shared<IECallContext>(uu, out, op.args, op.outs,
|
||
std::move(input_objs), std::move(output_objs));
|
||
|
||
const auto &kk = giem.metadata(this_nh).get<IECallable>();
|
||
|
||
// (4) Run the kernel.
|
||
kk.run(ctx, *m_reqPool);
|
||
|
||
// (5) In non-streaming mode need to wait until the all tasks are done
|
||
// FIXME: Is there more graceful way to handle this case ?
|
||
if (!m_gm.metadata().contains<Streaming>()) {
|
||
m_reqPool->waitAll();
|
||
}
|
||
}
|
||
|
||
namespace cv {
|
||
namespace gimpl {
|
||
namespace ie {
|
||
static void configureInputReshapeByImage(const IE::InputInfo::Ptr& ii,
|
||
const cv::GMetaArg mm,
|
||
IE::ICNNNetwork::InputShapes& input_reshape_table) {
|
||
const auto& layer_name = ii->name();
|
||
// Finding name in reshape table
|
||
const auto name_pos_in_table = input_reshape_table.find(layer_name);
|
||
// If contains then reshape for this layer already configured by shapes
|
||
// otherwise create a new element of reshape table with name and dimension
|
||
// which based on input image size.
|
||
if (name_pos_in_table != input_reshape_table.end()) {
|
||
GAPI_Assert(false &&
|
||
"Names of layers for reshape with specified dimensions shouldn't intersect with names for reshape by image");
|
||
}
|
||
cv::Size image_sz;
|
||
switch (mm.index()) {
|
||
case cv::GMetaArg::index_of<cv::GMatDesc>():
|
||
{
|
||
const auto &meta = util::get<cv::GMatDesc>(mm);
|
||
image_sz = meta.size;
|
||
break;
|
||
}
|
||
case cv::GMetaArg::index_of<cv::GFrameDesc>():
|
||
{
|
||
const auto &meta = util::get<cv::GFrameDesc>(mm);
|
||
image_sz = meta.size;
|
||
break;
|
||
}
|
||
default:
|
||
util::throw_error(std::runtime_error("Unsupported input meta for IE backend"));
|
||
}
|
||
auto input_dims = ii->getTensorDesc().getDims();
|
||
const auto size = input_dims.size();
|
||
if (size <= 1) {
|
||
GAPI_Assert(false && "Unsupported number of dimensions for reshape by image");
|
||
}
|
||
input_dims.at(size - 2) = static_cast<size_t>(image_sz.height);
|
||
input_dims.at(size - 1) = static_cast<size_t>(image_sz.width);
|
||
// Adding new element to reshape table
|
||
input_reshape_table.emplace(layer_name, input_dims);
|
||
}
|
||
|
||
static void configureInputInfo(const IE::InputInfo::Ptr& ii, const cv::GMetaArg mm) {
|
||
switch (mm.index()) {
|
||
case cv::GMetaArg::index_of<cv::GMatDesc>():
|
||
{
|
||
ii->setPrecision(toIE(util::get<cv::GMatDesc>(mm).depth));
|
||
break;
|
||
}
|
||
case cv::GMetaArg::index_of<cv::GFrameDesc>():
|
||
{
|
||
const auto &meta = util::get<cv::GFrameDesc>(mm);
|
||
switch (meta.fmt) {
|
||
case cv::MediaFormat::NV12:
|
||
ii->getPreProcess().setColorFormat(IE::ColorFormat::NV12);
|
||
break;
|
||
case cv::MediaFormat::BGR:
|
||
// NB: Do nothing
|
||
break;
|
||
default:
|
||
GAPI_Assert(false && "Unsupported media format for IE backend");
|
||
}
|
||
ii->setPrecision(toIE(CV_8U));
|
||
break;
|
||
}
|
||
default:
|
||
util::throw_error(std::runtime_error("Unsupported input meta for IE backend"));
|
||
}
|
||
}
|
||
|
||
static IE::PreProcessInfo configurePreProcInfo(const IE::InputInfo::CPtr& ii,
|
||
const cv::GMetaArg& mm) {
|
||
IE::PreProcessInfo info;
|
||
if (cv::util::holds_alternative<cv::GFrameDesc>(mm)) {
|
||
auto desc = cv::util::get<cv::GFrameDesc>(mm);
|
||
if (desc.fmt == cv::MediaFormat::NV12) {
|
||
info.setColorFormat(IE::ColorFormat::NV12);
|
||
}
|
||
}
|
||
const auto layout = ii->getTensorDesc().getLayout();
|
||
if (layout == IE::Layout::NCHW ||
|
||
layout == IE::Layout::NHWC) {
|
||
info.setResizeAlgorithm(IE::RESIZE_BILINEAR);
|
||
}
|
||
return info;
|
||
}
|
||
|
||
// NB: This is a callback used by async infer
|
||
// to post outputs blobs (cv::GMat's).
|
||
static void PostOutputs(InferenceEngine::InferRequest &request,
|
||
std::shared_ptr<IECallContext> ctx) {
|
||
GAPI_ITT_STATIC_LOCAL_HANDLE(ie_cb_post_outputs_hndl, "IE_async_callback_PostOutputs");
|
||
GAPI_ITT_AUTO_TRACE_GUARD(ie_cb_post_outputs_hndl);
|
||
|
||
for (auto i : ade::util::iota(ctx->uu.params.num_out))
|
||
{
|
||
auto& out_mat = ctx->outMatR(i);
|
||
IE::Blob::Ptr this_blob = request.GetBlob(ctx->uu.params.output_names[i]);
|
||
copyFromIE(this_blob, out_mat);
|
||
auto output = ctx->output(i);
|
||
ctx->out.meta(output, ctx->input(0).meta);
|
||
ctx->out.post(std::move(output));
|
||
}
|
||
}
|
||
|
||
class PostOutputsList {
|
||
public:
|
||
PostOutputsList(size_t size,
|
||
std::shared_ptr<IECallContext> ctx,
|
||
std::vector<std::vector<int>>&& cached_dims);
|
||
|
||
void operator()(InferenceEngine::InferRequest &request, size_t pos) const;
|
||
|
||
private:
|
||
struct Priv {
|
||
size_t size;
|
||
std::atomic<size_t> finished{0u};
|
||
std::shared_ptr<IECallContext> ctx;
|
||
std::vector<std::vector<int>> cached_dims;
|
||
};
|
||
std::shared_ptr<Priv> m_priv;
|
||
};
|
||
|
||
PostOutputsList::PostOutputsList(size_t size,
|
||
std::shared_ptr<IECallContext> ctx,
|
||
std::vector<std::vector<int>>&& cached_dims)
|
||
: m_priv(new Priv()) {
|
||
m_priv->size = size;
|
||
m_priv->ctx = ctx;
|
||
m_priv->cached_dims = std::move(cached_dims);
|
||
}
|
||
|
||
void PostOutputsList::operator()(InferenceEngine::InferRequest &req, size_t pos) const {
|
||
auto&& ctx = m_priv->ctx;
|
||
auto&& cached_dims = m_priv->cached_dims;
|
||
auto&& finished = m_priv->finished;
|
||
auto&& size = m_priv->size;
|
||
for (auto i : ade::util::iota(ctx->uu.params.num_out)) {
|
||
std::vector<cv::Mat> &out_vec = ctx->outVecR<cv::Mat>(i);
|
||
|
||
IE::Blob::Ptr out_blob = req.GetBlob(ctx->uu.params.output_names[i]);
|
||
GAPI_Assert(out_blob);
|
||
|
||
// FIXME: Avoid data copy. Not sure if it is possible though
|
||
out_vec[pos].create(cached_dims[i], toCV(out_blob->getTensorDesc().getPrecision()));
|
||
copyFromIE(out_blob, out_vec[pos]);
|
||
}
|
||
++finished;
|
||
|
||
if (finished == size) {
|
||
for (auto i : ade::util::iota(ctx->uu.params.num_out)) {
|
||
auto output = ctx->output(i);
|
||
ctx->out.meta(output, ctx->input(0).meta);
|
||
ctx->out.post(std::move(output));
|
||
}
|
||
}
|
||
}
|
||
|
||
struct Infer: public cv::detail::KernelTag {
|
||
using API = cv::GInferBase;
|
||
static cv::gapi::GBackend backend() { return cv::gapi::ie::backend(); }
|
||
static KImpl kernel() { return KImpl{outMeta, run}; }
|
||
|
||
static cv::GMetaArgs outMeta(const ade::Graph &gr,
|
||
const ade::NodeHandle &nh,
|
||
const cv::GMetaArgs &in_metas,
|
||
const cv::GArgs &/*in_args*/) {
|
||
// Specify network's output layer metadata to the framework
|
||
// Also specify the input information to the IE from the framework
|
||
// NB: Have no clue if network's input [dimensions] may ever define
|
||
// its output dimensions. It seems possible with OpenCV DNN APIs
|
||
|
||
cv::GMetaArgs result;
|
||
|
||
GConstGIEModel gm(gr);
|
||
const auto &uu = gm.metadata(nh).get<IEUnit>();
|
||
IE::ICNNNetwork::InputShapes input_reshape_table = uu.params.reshape_table;
|
||
|
||
// Initialize input information
|
||
// Note our input layers list order matches the API order and so
|
||
// meta order.
|
||
GAPI_Assert(uu.params.input_names.size() == in_metas.size()
|
||
&& "Known input layers count doesn't match input meta count");
|
||
|
||
// NB: Configuring input precision and network reshape must be done
|
||
// only in the loadNetwork case.
|
||
using namespace cv::gapi::ie::detail;
|
||
if (uu.params.kind == ParamDesc::Kind::Load) {
|
||
auto inputs = uu.net.getInputsInfo();
|
||
for (auto &&it : ade::util::zip(ade::util::toRange(uu.params.input_names),
|
||
ade::util::toRange(in_metas))) {
|
||
const auto &input_name = std::get<0>(it);
|
||
auto ii = inputs.at(input_name);
|
||
const auto & mm = std::get<1>(it);
|
||
|
||
configureInputInfo(ii, mm);
|
||
if (uu.params.layer_names_to_reshape.find(input_name) !=
|
||
uu.params.layer_names_to_reshape.end()) {
|
||
configureInputReshapeByImage(ii, mm, input_reshape_table);
|
||
}
|
||
|
||
// NB: Configure resize only for NCHW/NHWC layout,
|
||
// since it isn't supposed to work with others.
|
||
auto layout = ii->getTensorDesc().getLayout();
|
||
if (layout == IE::Layout::NCHW ||
|
||
layout == IE::Layout::NHWC) {
|
||
ii->getPreProcess().setResizeAlgorithm(IE::RESIZE_BILINEAR);
|
||
}
|
||
}
|
||
|
||
// FIXME: This isn't the best place to call reshape function.
|
||
// Сorrect solution would be to do this in compile() method of network,
|
||
// but now input meta isn't passed to compile() method.
|
||
if (!input_reshape_table.empty()) {
|
||
const_cast<IE::CNNNetwork *>(&uu.net)->reshape(input_reshape_table);
|
||
}
|
||
} else {
|
||
GAPI_Assert(uu.params.kind == ParamDesc::Kind::Import);
|
||
auto inputs = uu.this_network.GetInputsInfo();
|
||
// FIXME: This isn't the best place to collect PreProcMap.
|
||
auto* non_const_prepm = const_cast<IEUnit::PreProcMap*>(&uu.preproc_map);
|
||
for (auto &&it : ade::util::zip(ade::util::toRange(uu.params.input_names),
|
||
ade::util::toRange(in_metas))) {
|
||
const auto &input_name = std::get<0>(it);
|
||
auto ii = inputs.at(input_name);
|
||
const auto & mm = std::get<1>(it);
|
||
non_const_prepm->emplace(input_name, configurePreProcInfo(ii, mm));
|
||
}
|
||
}
|
||
|
||
// FIXME: It would be nice here to have an exact number of network's
|
||
// input/output parameters. Probably GCall should store it here for us.
|
||
// It doesn't, as far as I know..
|
||
for (const auto &out_name : uu.params.output_names) {
|
||
// NOTE: our output_names vector follows the API order
|
||
// of this operation's outputs
|
||
const auto& desc =
|
||
uu.params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Load
|
||
? uu.net.getOutputsInfo().at(out_name)->getTensorDesc()
|
||
: uu.this_network.GetOutputsInfo().at(out_name)->getTensorDesc();
|
||
|
||
cv::GMatDesc outm(toCV(desc.getPrecision()),
|
||
toCV(desc.getDims()));
|
||
result.emplace_back(outm);
|
||
}
|
||
return result;
|
||
}
|
||
|
||
static void run(std::shared_ptr<IECallContext> ctx,
|
||
cv::gimpl::ie::RequestPool &reqPool) {
|
||
using namespace std::placeholders;
|
||
reqPool.execute(
|
||
cv::gimpl::ie::RequestPool::Task {
|
||
[ctx](InferenceEngine::InferRequest &req) {
|
||
// non-generic version for now:
|
||
// - assumes all inputs/outputs are always Mats
|
||
for (auto i : ade::util::iota(ctx->uu.params.num_in)) {
|
||
const auto& layer_name = ctx->uu.params.input_names[i];
|
||
auto layout =
|
||
ctx->uu.this_network.GetInputsInfo().
|
||
at(layer_name)->getTensorDesc().getLayout();
|
||
auto hint =
|
||
(layout == IE::Layout::NCHW || layout == IE::Layout::NHWC)
|
||
? cv::gapi::ie::TraitAs::IMAGE : cv::gapi::ie::TraitAs::TENSOR;
|
||
|
||
IE::Blob::Ptr this_blob = extractBlob(*ctx, i, hint);
|
||
setBlob(req, layer_name, this_blob, *ctx);
|
||
}
|
||
// FIXME: Should it be done by kernel ?
|
||
// What about to do that in RequestPool ?
|
||
req.StartAsync();
|
||
},
|
||
std::bind(PostOutputs, _1, ctx)
|
||
}
|
||
);
|
||
}
|
||
};
|
||
|
||
struct InferROI: public cv::detail::KernelTag {
|
||
using API = cv::GInferROIBase;
|
||
static cv::gapi::GBackend backend() { return cv::gapi::ie::backend(); }
|
||
static KImpl kernel() { return KImpl{outMeta, run}; }
|
||
|
||
static cv::GMetaArgs outMeta(const ade::Graph &gr,
|
||
const ade::NodeHandle &nh,
|
||
const cv::GMetaArgs &in_metas,
|
||
const cv::GArgs &/*in_args*/) {
|
||
cv::GMetaArgs result;
|
||
|
||
GConstGIEModel gm(gr);
|
||
const auto &uu = gm.metadata(nh).get<IEUnit>();
|
||
IE::ICNNNetwork::InputShapes input_reshape_table = uu.params.reshape_table;
|
||
|
||
// Initialize input information
|
||
// FIXME: So far it is pretty limited
|
||
GAPI_Assert(1u == uu.params.input_names.size());
|
||
GAPI_Assert(2u == in_metas.size());
|
||
|
||
const auto &input_name = uu.params.input_names.at(0);
|
||
auto &&mm = in_metas.at(1u);
|
||
// NB: Configuring input precision and network reshape must be done
|
||
// only in the loadNetwork case.
|
||
if (uu.params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Load) {
|
||
// 0th is ROI, 1st is input image
|
||
auto ii = uu.net.getInputsInfo().at(input_name);
|
||
configureInputInfo(ii, mm);
|
||
if (uu.params.layer_names_to_reshape.find(input_name) !=
|
||
uu.params.layer_names_to_reshape.end()) {
|
||
configureInputReshapeByImage(ii, mm, input_reshape_table);
|
||
}
|
||
ii->getPreProcess().setResizeAlgorithm(IE::RESIZE_BILINEAR);
|
||
|
||
// FIXME: This isn't the best place to call reshape function.
|
||
// Сorrect solution would be to do this in compile() method of network,
|
||
// but now input meta isn't passed to compile() method.
|
||
if (!input_reshape_table.empty()) {
|
||
const_cast<IE::CNNNetwork *>(&uu.net)->reshape(input_reshape_table);
|
||
}
|
||
} else {
|
||
GAPI_Assert(uu.params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Import);
|
||
auto inputs = uu.this_network.GetInputsInfo();
|
||
// FIXME: This isn't the best place to collect PreProcMap.
|
||
auto* non_const_prepm = const_cast<IEUnit::PreProcMap*>(&uu.preproc_map);
|
||
auto ii = inputs.at(input_name);
|
||
non_const_prepm->emplace(input_name, configurePreProcInfo(ii, mm));
|
||
}
|
||
|
||
// FIXME: It would be nice here to have an exact number of network's
|
||
// input/output parameters. Probably GCall should store it here for us.
|
||
// It doesn't, as far as I know..
|
||
for (const auto &out_name : uu.params.output_names) {
|
||
// NOTE: our output_names vector follows the API order
|
||
// of this operation's outputs
|
||
const auto& desc =
|
||
uu.params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Load
|
||
? uu.net.getOutputsInfo().at(out_name)->getTensorDesc()
|
||
: uu.this_network.GetOutputsInfo().at(out_name)->getTensorDesc();
|
||
|
||
cv::GMatDesc outm(toCV(desc.getPrecision()),
|
||
toCV(desc.getDims()));
|
||
result.emplace_back(outm);
|
||
}
|
||
return result;
|
||
}
|
||
|
||
static void run(std::shared_ptr<IECallContext> ctx,
|
||
cv::gimpl::ie::RequestPool &reqPool) {
|
||
using namespace std::placeholders;
|
||
reqPool.execute(
|
||
cv::gimpl::ie::RequestPool::Task {
|
||
[ctx](InferenceEngine::InferRequest &req) {
|
||
GAPI_Assert(ctx->uu.params.num_in == 1);
|
||
auto&& this_roi = ctx->inArg<cv::detail::OpaqueRef>(0).rref<cv::Rect>();
|
||
|
||
// NB: This blob will be used to make roi from its, so
|
||
// it should be treated as image
|
||
IE::Blob::Ptr this_blob =
|
||
extractBlob(*ctx, 1, cv::gapi::ie::TraitAs::IMAGE);
|
||
setBlob(req,
|
||
*(ctx->uu.params.input_names.begin()),
|
||
IE::make_shared_blob(this_blob, toIE(this_roi)),
|
||
*ctx);
|
||
// FIXME: Should it be done by kernel ?
|
||
// What about to do that in RequestPool ?
|
||
req.StartAsync();
|
||
},
|
||
std::bind(PostOutputs, _1, ctx)
|
||
}
|
||
);
|
||
}
|
||
};
|
||
|
||
|
||
struct InferList: public cv::detail::KernelTag {
|
||
using API = cv::GInferListBase;
|
||
static cv::gapi::GBackend backend() { return cv::gapi::ie::backend(); }
|
||
static KImpl kernel() { return KImpl{outMeta, run}; }
|
||
|
||
static cv::GMetaArgs outMeta(const ade::Graph &gr,
|
||
const ade::NodeHandle &nh,
|
||
const cv::GMetaArgs &in_metas,
|
||
const cv::GArgs &/*in_args*/) {
|
||
// Specify the input information to the IE from the framework
|
||
// NB: Have no clue if network's input [dimensions] may ever define
|
||
// its output dimensions. It seems possible with OpenCV DNN APIs
|
||
|
||
GConstGIEModel gm(gr);
|
||
const auto &uu = gm.metadata(nh).get<IEUnit>();
|
||
IE::ICNNNetwork::InputShapes input_reshape_table = uu.params.reshape_table;
|
||
|
||
// Initialize input information
|
||
// Note our input layers list order matches the API order and so
|
||
// meta order.
|
||
GAPI_Assert(uu.params.input_names.size() == (in_metas.size() - 1u)
|
||
&& "Known input layers count doesn't match input meta count");
|
||
|
||
// NB: Configuring input precision and network reshape must be done
|
||
// only in the loadNetwork case.
|
||
if (uu.params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Load) {
|
||
std::size_t idx = 1u;
|
||
auto inputs = uu.net.getInputsInfo();
|
||
for (auto &&input_name : uu.params.input_names) {
|
||
auto ii = inputs.at(input_name);
|
||
const auto & mm = in_metas[idx++];
|
||
configureInputInfo(ii, mm);
|
||
if (uu.params.layer_names_to_reshape.find(input_name) !=
|
||
uu.params.layer_names_to_reshape.end()) {
|
||
configureInputReshapeByImage(ii, mm, input_reshape_table);
|
||
}
|
||
ii->getPreProcess().setResizeAlgorithm(IE::RESIZE_BILINEAR);
|
||
}
|
||
|
||
// FIXME: This isn't the best place to call reshape function.
|
||
// Сorrect solution would be to do this in compile() method of network,
|
||
// but now input meta isn't passed to compile() method.
|
||
if (!input_reshape_table.empty()) {
|
||
const_cast<IE::CNNNetwork *>(&uu.net)->reshape(input_reshape_table);
|
||
}
|
||
} else {
|
||
GAPI_Assert(uu.params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Import);
|
||
std::size_t idx = 1u;
|
||
auto inputs = uu.this_network.GetInputsInfo();
|
||
auto* non_const_prepm = const_cast<IEUnit::PreProcMap*>(&uu.preproc_map);
|
||
for (auto &&input_name : uu.params.input_names) {
|
||
auto ii = inputs.at(input_name);
|
||
const auto & mm = in_metas[idx++];
|
||
non_const_prepm->emplace(input_name, configurePreProcInfo(ii, mm));
|
||
}
|
||
}
|
||
|
||
// roi-list version is much easier at the moment.
|
||
// All our outputs are vectors which don't have
|
||
// metadata at the moment - so just create a vector of
|
||
// "empty" array metadatas of the required size.
|
||
return cv::GMetaArgs(uu.params.output_names.size(),
|
||
cv::GMetaArg{cv::empty_array_desc()});
|
||
}
|
||
|
||
static void run(std::shared_ptr<IECallContext> ctx,
|
||
cv::gimpl::ie::RequestPool &reqPool) {
|
||
|
||
const auto& in_roi_vec = ctx->inArg<cv::detail::VectorRef>(0u).rref<cv::Rect>();
|
||
// NB: In case there is no input data need to post output anyway
|
||
if (in_roi_vec.empty()) {
|
||
for (auto i : ade::util::iota(ctx->uu.params.num_out)) {
|
||
auto output = ctx->output(i);
|
||
ctx->out.meta(output, ctx->input(0).meta);
|
||
ctx->out.post(std::move(output));
|
||
}
|
||
return;
|
||
}
|
||
|
||
// NB: This blob will be used to make roi from its, so
|
||
// it should be treated as image
|
||
IE::Blob::Ptr this_blob = extractBlob(*ctx, 1, cv::gapi::ie::TraitAs::IMAGE);
|
||
|
||
std::vector<std::vector<int>> cached_dims(ctx->uu.params.num_out);
|
||
for (auto i : ade::util::iota(ctx->uu.params.num_out)) {
|
||
const auto& out_name = ctx->uu.params.output_names[i];
|
||
const auto& desc =
|
||
ctx->uu.params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Load
|
||
? ctx->uu.net.getOutputsInfo().at(out_name)->getTensorDesc()
|
||
: ctx->uu.this_network.GetOutputsInfo().at(out_name)->getTensorDesc();
|
||
cached_dims[i] = toCV(desc.getDims());
|
||
// FIXME: Isn't this should be done automatically
|
||
// by some resetInternalData(), etc? (Probably at the GExecutor level)
|
||
auto& out_vec = ctx->outVecR<cv::Mat>(i);
|
||
out_vec.clear();
|
||
out_vec.resize(in_roi_vec.size());
|
||
}
|
||
|
||
PostOutputsList callback(in_roi_vec.size(), ctx, std::move(cached_dims));
|
||
for (auto&& it : ade::util::indexed(in_roi_vec)) {
|
||
auto pos = ade::util::index(it);
|
||
const auto& rc = ade::util::value(it);
|
||
reqPool.execute(
|
||
cv::gimpl::ie::RequestPool::Task {
|
||
[ctx, rc, this_blob](InferenceEngine::InferRequest &req) {
|
||
IE::Blob::Ptr roi_blob = IE::make_shared_blob(this_blob, toIE(rc));
|
||
setBlob(req, ctx->uu.params.input_names[0u], roi_blob, *ctx);
|
||
req.StartAsync();
|
||
},
|
||
std::bind(callback, std::placeholders::_1, pos)
|
||
}
|
||
);
|
||
}
|
||
}
|
||
};
|
||
|
||
struct InferList2: public cv::detail::KernelTag {
|
||
using API = cv::GInferList2Base;
|
||
static cv::gapi::GBackend backend() { return cv::gapi::ie::backend(); }
|
||
static KImpl kernel() { return KImpl{outMeta, run}; }
|
||
|
||
static cv::GMetaArgs outMeta(const ade::Graph &gr,
|
||
const ade::NodeHandle &nh,
|
||
const cv::GMetaArgs &in_metas,
|
||
const cv::GArgs &/*in_args*/) {
|
||
// Specify the input information to the IE from the framework
|
||
// NB: Have no clue if network's input [dimensions] may ever define
|
||
// its output dimensions. It seems possible with OpenCV DNN APIs
|
||
|
||
GConstGIEModel gm(gr);
|
||
const auto &uu = gm.metadata(nh).get<IEUnit>();
|
||
IE::ICNNNetwork::InputShapes input_reshape_table = uu.params.reshape_table;
|
||
|
||
// Initialize input information
|
||
// Note our input layers list order matches the API order and so
|
||
// meta order.
|
||
GAPI_Assert(uu.params.input_names.size() == (in_metas.size() - 1u)
|
||
&& "Known input layers count doesn't match input meta count");
|
||
|
||
const auto &op = gm.metadata(nh).get<Op>();
|
||
|
||
// In contrast to InferList, the InferList2 has only one
|
||
// "full-frame" image argument, and all the rest are arrays of
|
||
// ether ROI or blobs. So here we set the 0th arg image format
|
||
// to all inputs which are ROI-based (skipping the
|
||
// "blob"-based ones)
|
||
// FIXME: this is filtering not done, actually! GArrayDesc has
|
||
// no hint for its underlying type!
|
||
const auto &mm_0 = in_metas[0u];
|
||
switch (in_metas[0u].index()) {
|
||
case cv::GMetaArg::index_of<cv::GMatDesc>(): {
|
||
const auto &meta_0 = util::get<cv::GMatDesc>(mm_0);
|
||
GAPI_Assert( !meta_0.isND()
|
||
&& !meta_0.planar
|
||
&& "Only images are supported as the 0th argument");
|
||
break;
|
||
}
|
||
case cv::GMetaArg::index_of<cv::GFrameDesc>(): {
|
||
// FIXME: Is there any validation for GFrame ?
|
||
break;
|
||
}
|
||
default:
|
||
util::throw_error(std::runtime_error("Unsupported input meta for IE backend"));
|
||
}
|
||
|
||
if (util::holds_alternative<cv::GMatDesc>(mm_0)) {
|
||
const auto &meta_0 = util::get<cv::GMatDesc>(mm_0);
|
||
GAPI_Assert( !meta_0.isND()
|
||
&& !meta_0.planar
|
||
&& "Only images are supported as the 0th argument");
|
||
}
|
||
|
||
std::size_t idx = 1u;
|
||
for (auto &&input_name : uu.params.input_names) {
|
||
const auto &mm = in_metas[idx];
|
||
GAPI_Assert(util::holds_alternative<cv::GArrayDesc>(mm)
|
||
&& "Non-array inputs are not supported");
|
||
|
||
if (op.k.inKinds[idx] == cv::detail::OpaqueKind::CV_RECT) {
|
||
// NB: Configuring input precision and network reshape must be done
|
||
// only in the loadNetwork case.
|
||
if (uu.params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Load) {
|
||
// This is a cv::Rect -- configure the IE preprocessing
|
||
auto ii = uu.net.getInputsInfo().at(input_name);
|
||
configureInputInfo(ii, mm_0);
|
||
if (uu.params.layer_names_to_reshape.find(input_name) !=
|
||
uu.params.layer_names_to_reshape.end()) {
|
||
configureInputReshapeByImage(ii, mm_0, input_reshape_table);
|
||
}
|
||
ii->getPreProcess().setResizeAlgorithm(IE::RESIZE_BILINEAR);
|
||
|
||
// FIXME: This isn't the best place to call reshape function.
|
||
// Сorrect solution would be to do this in compile() method of network,
|
||
// but now input meta isn't passed to compile() method.
|
||
if (!input_reshape_table.empty()) {
|
||
const_cast<IE::CNNNetwork *>(&uu.net)->reshape(input_reshape_table);
|
||
}
|
||
} else {
|
||
GAPI_Assert(uu.params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Import);
|
||
auto inputs = uu.this_network.GetInputsInfo();
|
||
auto* non_const_prepm = const_cast<IEUnit::PreProcMap*>(&uu.preproc_map);
|
||
auto ii = inputs.at(input_name);
|
||
non_const_prepm->emplace(input_name, configurePreProcInfo(ii, mm_0));
|
||
}
|
||
} else {
|
||
// This is a cv::GMat (equals to: cv::Mat)
|
||
// Just validate that it is really the type
|
||
// (other types are prohibited here)
|
||
GAPI_Assert(op.k.inKinds[idx] == cv::detail::OpaqueKind::CV_MAT);
|
||
}
|
||
idx++; // NB: Never forget to increment the counter
|
||
}
|
||
|
||
// roi-list version is much easier at the moment.
|
||
// All our outputs are vectors which don't have
|
||
// metadata at the moment - so just create a vector of
|
||
// "empty" array metadatas of the required size.
|
||
return cv::GMetaArgs(uu.params.output_names.size(),
|
||
cv::GMetaArg{cv::empty_array_desc()});
|
||
}
|
||
|
||
static void run(std::shared_ptr<IECallContext> ctx,
|
||
cv::gimpl::ie::RequestPool &reqPool) {
|
||
GAPI_Assert(ctx->inArgs().size() > 1u
|
||
&& "This operation must have at least two arguments");
|
||
// NB: This blob will be used to make roi from its, so
|
||
// it should be treated as image
|
||
IE::Blob::Ptr blob_0 = extractBlob(*ctx, 0, cv::gapi::ie::TraitAs::IMAGE);
|
||
const auto list_size = ctx->inArg<cv::detail::VectorRef>(1u).size();
|
||
if (list_size == 0u) {
|
||
for (auto i : ade::util::iota(ctx->uu.params.num_out)) {
|
||
auto output = ctx->output(i);
|
||
ctx->out.meta(output, ctx->input(0).meta);
|
||
ctx->out.post(std::move(output));
|
||
}
|
||
return;
|
||
}
|
||
// FIXME: This could be done ONCE at graph compile stage!
|
||
std::vector< std::vector<int> > cached_dims(ctx->uu.params.num_out);
|
||
for (auto i : ade::util::iota(ctx->uu.params.num_out)) {
|
||
const auto& out_name = ctx->uu.params.output_names[i];
|
||
const auto& desc =
|
||
ctx->uu.params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Load
|
||
? ctx->uu.net.getOutputsInfo().at(out_name)->getTensorDesc()
|
||
: ctx->uu.this_network.GetOutputsInfo().at(out_name)->getTensorDesc();
|
||
cached_dims[i] = toCV(desc.getDims());
|
||
// FIXME: Isn't this should be done automatically
|
||
// by some resetInternalData(), etc? (Probably at the GExecutor level)
|
||
auto& out_vec = ctx->outVecR<cv::Mat>(i);
|
||
out_vec.clear();
|
||
out_vec.resize(list_size);
|
||
}
|
||
|
||
PostOutputsList callback(list_size, ctx, std::move(cached_dims));
|
||
for (const auto &list_idx : ade::util::iota(list_size)) {
|
||
reqPool.execute(
|
||
cv::gimpl::ie::RequestPool::Task {
|
||
[ctx, list_idx, list_size, blob_0](InferenceEngine::InferRequest &req) {
|
||
for (auto in_idx : ade::util::iota(ctx->uu.params.num_in)) {
|
||
const auto &this_vec = ctx->inArg<cv::detail::VectorRef>(in_idx+1u);
|
||
GAPI_Assert(this_vec.size() == list_size);
|
||
IE::Blob::Ptr this_blob;
|
||
if (this_vec.getKind() == cv::detail::OpaqueKind::CV_RECT) {
|
||
const auto &vec = this_vec.rref<cv::Rect>();
|
||
this_blob = IE::make_shared_blob(blob_0, toIE(vec[list_idx]));
|
||
} else if (this_vec.getKind() == cv::detail::OpaqueKind::CV_MAT) {
|
||
const auto &vec = this_vec.rref<cv::Mat>();
|
||
const auto &mat = vec[list_idx];
|
||
this_blob = wrapIE(mat, cv::gapi::ie::TraitAs::TENSOR);
|
||
} else {
|
||
GAPI_Assert(false &&
|
||
"Only Rect and Mat types are supported for infer list 2!");
|
||
}
|
||
setBlob(req, ctx->uu.params.input_names[in_idx], this_blob, *ctx);
|
||
}
|
||
req.StartAsync();
|
||
},
|
||
std::bind(callback, std::placeholders::_1, list_idx)
|
||
} // task
|
||
);
|
||
} // for
|
||
}
|
||
};
|
||
|
||
} // namespace ie
|
||
} // namespace gapi
|
||
} // namespace cv
|
||
|
||
|
||
// IE backend implementation of GBackend::Priv ///////////////////////
|
||
namespace {
|
||
class GIEBackendImpl final: public cv::gapi::GBackend::Priv {
|
||
virtual void unpackKernel(ade::Graph &gr,
|
||
const ade::NodeHandle &nh,
|
||
const cv::GKernelImpl &ii) override {
|
||
using namespace cv::gimpl;
|
||
// FIXME: Introduce a DNNBackend interface which'd specify
|
||
// the framework for this???
|
||
GIEModel gm(gr);
|
||
auto &np = gm.metadata(nh).get<NetworkParams>();
|
||
auto &pp = cv::util::any_cast<cv::gapi::ie::detail::ParamDesc>(np.opaque);
|
||
const auto &ki = cv::util::any_cast<KImpl>(ii.opaque);
|
||
|
||
GModel::Graph model(gr);
|
||
auto& op = model.metadata(nh).get<Op>();
|
||
|
||
// NB: In case generic infer, info about in/out names is stored in operation (op.params)
|
||
if (pp.is_generic)
|
||
{
|
||
auto& info = cv::util::any_cast<cv::detail::InOutInfo>(op.params);
|
||
pp.input_names = info.in_names;
|
||
pp.output_names = info.out_names;
|
||
pp.num_in = info.in_names.size();
|
||
pp.num_out = info.out_names.size();
|
||
}
|
||
|
||
gm.metadata(nh).set(IEUnit{pp});
|
||
gm.metadata(nh).set(IECallable{ki.run});
|
||
gm.metadata(nh).set(CustomMetaFunction{ki.customMetaFunc});
|
||
}
|
||
|
||
virtual EPtr compile(const ade::Graph &graph,
|
||
const cv::GCompileArgs &,
|
||
const std::vector<ade::NodeHandle> &nodes) const override {
|
||
return EPtr{new cv::gimpl::ie::GIEExecutable(graph, nodes)};
|
||
}
|
||
|
||
virtual cv::GKernelPackage auxiliaryKernels() const override {
|
||
return cv::gapi::kernels< cv::gimpl::ie::Infer
|
||
, cv::gimpl::ie::InferROI
|
||
, cv::gimpl::ie::InferList
|
||
, cv::gimpl::ie::InferList2
|
||
>();
|
||
}
|
||
|
||
virtual bool controlsMerge() const override {
|
||
return true;
|
||
}
|
||
|
||
virtual bool allowsMerge(const cv::gimpl::GIslandModel::Graph &,
|
||
const ade::NodeHandle &,
|
||
const ade::NodeHandle &,
|
||
const ade::NodeHandle &) const override {
|
||
return false;
|
||
}
|
||
};
|
||
}
|
||
|
||
cv::gapi::GBackend cv::gapi::ie::backend() {
|
||
static cv::gapi::GBackend this_backend(std::make_shared<GIEBackendImpl>());
|
||
return this_backend;
|
||
}
|
||
|
||
cv::Mat cv::gapi::ie::util::to_ocv(IE::Blob::Ptr blob) {
|
||
const auto& tdesc = blob->getTensorDesc();
|
||
return cv::Mat(toCV(tdesc.getDims()),
|
||
toCV(tdesc.getPrecision()),
|
||
blob->buffer().as<uint8_t*>());
|
||
}
|
||
|
||
std::vector<int> cv::gapi::ie::util::to_ocv(const IE::SizeVector &dims) {
|
||
return toCV(dims);
|
||
}
|
||
|
||
IE::Blob::Ptr cv::gapi::ie::util::to_ie(const cv::Mat &blob) {
|
||
return wrapIE(blob, cv::gapi::ie::TraitAs::IMAGE);
|
||
}
|
||
|
||
IE::Blob::Ptr cv::gapi::ie::util::to_ie(const cv::Mat &y_plane, const cv::Mat &uv_plane) {
|
||
auto y_blob = wrapIE(y_plane, cv::gapi::ie::TraitAs::IMAGE);
|
||
auto uv_blob = wrapIE(uv_plane, cv::gapi::ie::TraitAs::IMAGE);
|
||
#if INF_ENGINE_RELEASE >= 2021010000
|
||
return IE::make_shared_blob<IE::NV12Blob>(y_blob, uv_blob);
|
||
#else
|
||
return IE::make_shared_blob<InferenceEngine::NV12Blob>(y_blob, uv_blob);
|
||
#endif
|
||
}
|
||
|
||
#else // HAVE_INF_ENGINE
|
||
|
||
cv::gapi::GBackend cv::gapi::ie::backend() {
|
||
// Still provide this symbol to avoid linking issues
|
||
util::throw_error(std::runtime_error("G-API has been compiled without OpenVINO IE support"));
|
||
}
|
||
#endif // HAVE_INF_ENGINE
|