opencv/modules/cudalegacy/src/NCV.cpp
2018-09-07 20:33:52 +09:00

889 lines
25 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
//==============================================================================
//
// Error handling helpers
//
//==============================================================================
namespace
{
#define error_entry(entry) { entry, #entry }
struct ErrorEntry
{
int code;
const char* str;
};
struct ErrorEntryComparer
{
int code;
ErrorEntryComparer(int code_) : code(code_) {}
bool operator()(const ErrorEntry& e) const { return e.code == code; }
};
//////////////////////////////////////////////////////////////////////////
// NCV errors
const ErrorEntry ncv_errors [] =
{
error_entry( NCV_SUCCESS ),
error_entry( NCV_UNKNOWN_ERROR ),
error_entry( NCV_CUDA_ERROR ),
error_entry( NCV_NPP_ERROR ),
error_entry( NCV_FILE_ERROR ),
error_entry( NCV_NULL_PTR ),
error_entry( NCV_INCONSISTENT_INPUT ),
error_entry( NCV_TEXTURE_BIND_ERROR ),
error_entry( NCV_DIMENSIONS_INVALID ),
error_entry( NCV_INVALID_ROI ),
error_entry( NCV_INVALID_STEP ),
error_entry( NCV_INVALID_SCALE ),
error_entry( NCV_INVALID_SCALE ),
error_entry( NCV_ALLOCATOR_NOT_INITIALIZED ),
error_entry( NCV_ALLOCATOR_BAD_ALLOC ),
error_entry( NCV_ALLOCATOR_BAD_DEALLOC ),
error_entry( NCV_ALLOCATOR_INSUFFICIENT_CAPACITY ),
error_entry( NCV_ALLOCATOR_DEALLOC_ORDER ),
error_entry( NCV_ALLOCATOR_BAD_REUSE ),
error_entry( NCV_MEM_COPY_ERROR ),
error_entry( NCV_MEM_RESIDENCE_ERROR ),
error_entry( NCV_MEM_INSUFFICIENT_CAPACITY ),
error_entry( NCV_HAAR_INVALID_PIXEL_STEP ),
error_entry( NCV_HAAR_TOO_MANY_FEATURES_IN_CLASSIFIER ),
error_entry( NCV_HAAR_TOO_MANY_FEATURES_IN_CASCADE ),
error_entry( NCV_HAAR_TOO_LARGE_FEATURES ),
error_entry( NCV_HAAR_XML_LOADING_EXCEPTION ),
error_entry( NCV_NOIMPL_HAAR_TILTED_FEATURES ),
error_entry( NCV_WARNING_HAAR_DETECTIONS_VECTOR_OVERFLOW ),
error_entry( NPPST_SUCCESS ),
error_entry( NPPST_ERROR ),
error_entry( NPPST_CUDA_KERNEL_EXECUTION_ERROR ),
error_entry( NPPST_NULL_POINTER_ERROR ),
error_entry( NPPST_TEXTURE_BIND_ERROR ),
error_entry( NPPST_MEMCPY_ERROR ),
error_entry( NPPST_MEM_ALLOC_ERR ),
error_entry( NPPST_MEMFREE_ERR ),
error_entry( NPPST_INVALID_ROI ),
error_entry( NPPST_INVALID_STEP ),
error_entry( NPPST_INVALID_SCALE ),
error_entry( NPPST_MEM_INSUFFICIENT_BUFFER ),
error_entry( NPPST_MEM_RESIDENCE_ERROR ),
error_entry( NPPST_MEM_INTERNAL_ERROR )
};
const size_t ncv_error_num = sizeof(ncv_errors) / sizeof(ncv_errors[0]);
}
cv::String cv::cuda::getNcvErrorMessage(int code)
{
size_t idx = std::find_if(ncv_errors, ncv_errors + ncv_error_num, ErrorEntryComparer(code)) - ncv_errors;
const char* msg = (idx != ncv_error_num) ? ncv_errors[idx].str : "Unknown error code";
String str = cv::format("%s [Code = %d]", msg, code);
return str;
}
static void stdDebugOutput(const cv::String &msg)
{
std::cout << msg.c_str() << std::endl;
}
static NCVDebugOutputHandler *debugOutputHandler = stdDebugOutput;
void ncvDebugOutput(const cv::String &msg)
{
debugOutputHandler(msg);
}
void ncvSetDebugOutputHandler(NCVDebugOutputHandler *func)
{
debugOutputHandler = func;
}
//==============================================================================
//
// Memory wrappers and helpers
//
//==============================================================================
Ncv32u alignUp(Ncv32u what, Ncv32u alignment)
{
Ncv32u alignMask = alignment-1;
Ncv32u inverseAlignMask = ~alignMask;
Ncv32u res = (what + alignMask) & inverseAlignMask;
return res;
}
void NCVMemPtr::clear()
{
ptr = NULL;
memtype = NCVMemoryTypeNone;
}
void NCVMemSegment::clear()
{
begin.clear();
size = 0;
}
NCVStatus memSegCopyHelper(void *dst, NCVMemoryType dstType, const void *src, NCVMemoryType srcType, size_t sz, cudaStream_t cuStream)
{
NCVStatus ncvStat;
switch (dstType)
{
case NCVMemoryTypeHostPageable:
case NCVMemoryTypeHostPinned:
switch (srcType)
{
case NCVMemoryTypeHostPageable:
case NCVMemoryTypeHostPinned:
memcpy(dst, src, sz);
ncvStat = NCV_SUCCESS;
break;
case NCVMemoryTypeDevice:
if (cuStream != 0)
{
ncvAssertCUDAReturn(cudaMemcpyAsync(dst, src, sz, cudaMemcpyDeviceToHost, cuStream), NCV_CUDA_ERROR);
}
else
{
ncvAssertCUDAReturn(cudaMemcpy(dst, src, sz, cudaMemcpyDeviceToHost), NCV_CUDA_ERROR);
}
ncvStat = NCV_SUCCESS;
break;
default:
ncvStat = NCV_MEM_RESIDENCE_ERROR;
}
break;
case NCVMemoryTypeDevice:
switch (srcType)
{
case NCVMemoryTypeHostPageable:
case NCVMemoryTypeHostPinned:
if (cuStream != 0)
{
ncvAssertCUDAReturn(cudaMemcpyAsync(dst, src, sz, cudaMemcpyHostToDevice, cuStream), NCV_CUDA_ERROR);
}
else
{
ncvAssertCUDAReturn(cudaMemcpy(dst, src, sz, cudaMemcpyHostToDevice), NCV_CUDA_ERROR);
}
ncvStat = NCV_SUCCESS;
break;
case NCVMemoryTypeDevice:
if (cuStream != 0)
{
ncvAssertCUDAReturn(cudaMemcpyAsync(dst, src, sz, cudaMemcpyDeviceToDevice, cuStream), NCV_CUDA_ERROR);
}
else
{
ncvAssertCUDAReturn(cudaMemcpy(dst, src, sz, cudaMemcpyDeviceToDevice), NCV_CUDA_ERROR);
}
ncvStat = NCV_SUCCESS;
break;
default:
ncvStat = NCV_MEM_RESIDENCE_ERROR;
}
break;
default:
ncvStat = NCV_MEM_RESIDENCE_ERROR;
}
return ncvStat;
}
NCVStatus memSegCopyHelper2D(void *dst, Ncv32u dstPitch, NCVMemoryType dstType,
const void *src, Ncv32u srcPitch, NCVMemoryType srcType,
Ncv32u widthbytes, Ncv32u height, cudaStream_t cuStream)
{
NCVStatus ncvStat;
switch (dstType)
{
case NCVMemoryTypeHostPageable:
case NCVMemoryTypeHostPinned:
switch (srcType)
{
case NCVMemoryTypeHostPageable:
case NCVMemoryTypeHostPinned:
for (Ncv32u i=0; i<height; i++)
{
memcpy((char*)dst + i * dstPitch, (char*)src + i * srcPitch, widthbytes);
}
ncvStat = NCV_SUCCESS;
break;
case NCVMemoryTypeDevice:
if (cuStream != 0)
{
ncvAssertCUDAReturn(cudaMemcpy2DAsync(dst, dstPitch, src, srcPitch, widthbytes, height, cudaMemcpyDeviceToHost, cuStream), NCV_CUDA_ERROR);
}
else
{
ncvAssertCUDAReturn(cudaMemcpy2D(dst, dstPitch, src, srcPitch, widthbytes, height, cudaMemcpyDeviceToHost), NCV_CUDA_ERROR);
}
ncvStat = NCV_SUCCESS;
break;
default:
ncvStat = NCV_MEM_RESIDENCE_ERROR;
}
break;
case NCVMemoryTypeDevice:
switch (srcType)
{
case NCVMemoryTypeHostPageable:
case NCVMemoryTypeHostPinned:
if (cuStream != 0)
{
ncvAssertCUDAReturn(cudaMemcpy2DAsync(dst, dstPitch, src, srcPitch, widthbytes, height, cudaMemcpyHostToDevice, cuStream), NCV_CUDA_ERROR);
}
else
{
ncvAssertCUDAReturn(cudaMemcpy2D(dst, dstPitch, src, srcPitch, widthbytes, height, cudaMemcpyHostToDevice), NCV_CUDA_ERROR);
}
ncvStat = NCV_SUCCESS;
break;
case NCVMemoryTypeDevice:
if (cuStream != 0)
{
ncvAssertCUDAReturn(cudaMemcpy2DAsync(dst, dstPitch, src, srcPitch, widthbytes, height, cudaMemcpyDeviceToDevice, cuStream), NCV_CUDA_ERROR);
}
else
{
ncvAssertCUDAReturn(cudaMemcpy2D(dst, dstPitch, src, srcPitch, widthbytes, height, cudaMemcpyDeviceToDevice), NCV_CUDA_ERROR);
}
ncvStat = NCV_SUCCESS;
break;
default:
ncvStat = NCV_MEM_RESIDENCE_ERROR;
}
break;
default:
ncvStat = NCV_MEM_RESIDENCE_ERROR;
}
return ncvStat;
}
//===================================================================
//
// NCVMemStackAllocator class members implementation
//
//===================================================================
NCVMemStackAllocator::NCVMemStackAllocator(Ncv32u alignment_) :
_memType(NCVMemoryTypeNone),
_alignment(alignment_),
allocBegin(NULL),
begin(NULL),
end(NULL),
currentSize(0),
_maxSize(0),
bReusesMemory(false)
{
NcvBool bProperAlignment = (alignment_ & (alignment_ - 1)) == 0;
ncvAssertPrintCheck(bProperAlignment, "NCVMemStackAllocator ctor:: alignment not power of 2");
}
NCVMemStackAllocator::NCVMemStackAllocator(NCVMemoryType memT, size_t capacity, Ncv32u alignment_, void *reusePtr) :
_memType(memT),
_alignment(alignment_),
allocBegin(NULL),
currentSize(0),
_maxSize(0)
{
NcvBool bProperAlignment = (alignment_ & (alignment_ - 1)) == 0;
ncvAssertPrintCheck(bProperAlignment, "NCVMemStackAllocator ctor:: _alignment not power of 2");
ncvAssertPrintCheck(memT != NCVMemoryTypeNone, "NCVMemStackAllocator ctor:: Incorrect allocator type");
allocBegin = NULL;
if (reusePtr == NULL && capacity != 0)
{
bReusesMemory = false;
switch (memT)
{
case NCVMemoryTypeDevice:
ncvAssertCUDAReturn(cudaMalloc(&allocBegin, capacity), );
break;
case NCVMemoryTypeHostPinned:
ncvAssertCUDAReturn(cudaMallocHost(&allocBegin, capacity), );
break;
case NCVMemoryTypeHostPageable:
allocBegin = (Ncv8u *)malloc(capacity);
break;
default:;
}
}
else
{
bReusesMemory = true;
allocBegin = (Ncv8u *)reusePtr;
}
if (capacity == 0)
{
allocBegin = (Ncv8u *)(0x1);
}
if (!isCounting())
{
begin = allocBegin;
end = begin + capacity;
}
}
NCVMemStackAllocator::~NCVMemStackAllocator()
{
if (allocBegin != NULL)
{
ncvAssertPrintCheck(currentSize == 0, "NCVMemStackAllocator dtor:: not all objects were deallocated properly, forcing destruction");
if (!bReusesMemory && (allocBegin != (Ncv8u *)(0x1)))
{
switch (_memType)
{
case NCVMemoryTypeDevice:
ncvAssertCUDAReturn(cudaFree(allocBegin), );
break;
case NCVMemoryTypeHostPinned:
ncvAssertCUDAReturn(cudaFreeHost(allocBegin), );
break;
case NCVMemoryTypeHostPageable:
free(allocBegin);
break;
default:;
}
}
allocBegin = NULL;
}
}
NCVStatus NCVMemStackAllocator::alloc(NCVMemSegment &seg, size_t size)
{
seg.clear();
ncvAssertReturn(isInitialized(), NCV_ALLOCATOR_BAD_ALLOC);
size = alignUp(static_cast<Ncv32u>(size), this->_alignment);
this->currentSize += size;
this->_maxSize = std::max(this->_maxSize, this->currentSize);
if (!isCounting())
{
size_t availSize = end - begin;
ncvAssertReturn(size <= availSize, NCV_ALLOCATOR_INSUFFICIENT_CAPACITY);
}
seg.begin.ptr = begin;
seg.begin.memtype = this->_memType;
seg.size = size;
begin += size;
return NCV_SUCCESS;
}
NCVStatus NCVMemStackAllocator::dealloc(NCVMemSegment &seg)
{
ncvAssertReturn(isInitialized(), NCV_ALLOCATOR_BAD_ALLOC);
ncvAssertReturn(seg.begin.memtype == this->_memType, NCV_ALLOCATOR_BAD_DEALLOC);
ncvAssertReturn(seg.begin.ptr != NULL || isCounting(), NCV_ALLOCATOR_BAD_DEALLOC);
ncvAssertReturn(seg.begin.ptr == begin - seg.size, NCV_ALLOCATOR_DEALLOC_ORDER);
currentSize -= seg.size;
begin -= seg.size;
seg.clear();
ncvAssertReturn(allocBegin <= begin, NCV_ALLOCATOR_BAD_DEALLOC);
return NCV_SUCCESS;
}
NcvBool NCVMemStackAllocator::isInitialized(void) const
{
return (((this->_alignment & (this->_alignment-1)) == 0) && isCounting()) || this->allocBegin != NULL;
}
NcvBool NCVMemStackAllocator::isCounting(void) const
{
return this->_memType == NCVMemoryTypeNone;
}
NCVMemoryType NCVMemStackAllocator::memType(void) const
{
return this->_memType;
}
Ncv32u NCVMemStackAllocator::alignment(void) const
{
return this->_alignment;
}
size_t NCVMemStackAllocator::maxSize(void) const
{
return this->_maxSize;
}
//===================================================================
//
// NCVMemNativeAllocator class members implementation
//
//===================================================================
NCVMemNativeAllocator::NCVMemNativeAllocator(NCVMemoryType memT, Ncv32u alignment_) :
_memType(memT),
_alignment(alignment_),
currentSize(0),
_maxSize(0)
{
ncvAssertPrintReturn(memT != NCVMemoryTypeNone, "NCVMemNativeAllocator ctor:: counting not permitted for this allocator type", );
}
NCVMemNativeAllocator::~NCVMemNativeAllocator()
{
ncvAssertPrintCheck(currentSize == 0, "NCVMemNativeAllocator dtor:: detected memory leak");
}
NCVStatus NCVMemNativeAllocator::alloc(NCVMemSegment &seg, size_t size)
{
seg.clear();
ncvAssertReturn(isInitialized(), NCV_ALLOCATOR_BAD_ALLOC);
switch (this->_memType)
{
case NCVMemoryTypeDevice:
ncvAssertCUDAReturn(cudaMalloc(&seg.begin.ptr, size), NCV_CUDA_ERROR);
break;
case NCVMemoryTypeHostPinned:
ncvAssertCUDAReturn(cudaMallocHost(&seg.begin.ptr, size), NCV_CUDA_ERROR);
break;
case NCVMemoryTypeHostPageable:
seg.begin.ptr = (Ncv8u *)malloc(size);
break;
default:;
}
this->currentSize += alignUp(static_cast<Ncv32u>(size), this->_alignment);
this->_maxSize = std::max(this->_maxSize, this->currentSize);
seg.begin.memtype = this->_memType;
seg.size = size;
return NCV_SUCCESS;
}
NCVStatus NCVMemNativeAllocator::dealloc(NCVMemSegment &seg)
{
ncvAssertReturn(isInitialized(), NCV_ALLOCATOR_BAD_ALLOC);
ncvAssertReturn(seg.begin.memtype == this->_memType, NCV_ALLOCATOR_BAD_DEALLOC);
ncvAssertReturn(seg.begin.ptr != NULL, NCV_ALLOCATOR_BAD_DEALLOC);
ncvAssertReturn(currentSize >= alignUp(static_cast<Ncv32u>(seg.size), this->_alignment), NCV_ALLOCATOR_BAD_DEALLOC);
currentSize -= alignUp(static_cast<Ncv32u>(seg.size), this->_alignment);
switch (this->_memType)
{
case NCVMemoryTypeDevice:
ncvAssertCUDAReturn(cudaFree(seg.begin.ptr), NCV_CUDA_ERROR);
break;
case NCVMemoryTypeHostPinned:
ncvAssertCUDAReturn(cudaFreeHost(seg.begin.ptr), NCV_CUDA_ERROR);
break;
case NCVMemoryTypeHostPageable:
free(seg.begin.ptr);
break;
default:;
}
seg.clear();
return NCV_SUCCESS;
}
NcvBool NCVMemNativeAllocator::isInitialized(void) const
{
return (this->_alignment != 0);
}
NcvBool NCVMemNativeAllocator::isCounting(void) const
{
return false;
}
NCVMemoryType NCVMemNativeAllocator::memType(void) const
{
return this->_memType;
}
Ncv32u NCVMemNativeAllocator::alignment(void) const
{
return this->_alignment;
}
size_t NCVMemNativeAllocator::maxSize(void) const
{
return this->_maxSize;
}
//===================================================================
//
// Time and timer routines
//
//===================================================================
typedef struct _NcvTimeMoment NcvTimeMoment;
#if defined(_WIN32) || defined(_WIN64)
#include <Windows.h>
typedef struct _NcvTimeMoment
{
LONGLONG moment, freq;
} NcvTimeMoment;
static void _ncvQueryMoment(NcvTimeMoment *t)
{
QueryPerformanceFrequency((LARGE_INTEGER *)&(t->freq));
QueryPerformanceCounter((LARGE_INTEGER *)&(t->moment));
}
double _ncvMomentToMicroseconds(NcvTimeMoment *t)
{
return 1000000.0 * t->moment / t->freq;
}
double _ncvMomentsDiffToMicroseconds(NcvTimeMoment *t1, NcvTimeMoment *t2)
{
return 1000000.0 * 2 * ((t2->moment) - (t1->moment)) / (t1->freq + t2->freq);
}
double _ncvMomentsDiffToMilliseconds(NcvTimeMoment *t1, NcvTimeMoment *t2)
{
return 1000.0 * 2 * ((t2->moment) - (t1->moment)) / (t1->freq + t2->freq);
}
#elif defined(__GNUC__)
#include <sys/time.h>
typedef struct _NcvTimeMoment
{
struct timeval tv;
struct timezone tz;
} NcvTimeMoment;
void _ncvQueryMoment(NcvTimeMoment *t)
{
gettimeofday(& t->tv, & t->tz);
}
double _ncvMomentToMicroseconds(NcvTimeMoment *t)
{
return 1000000.0 * t->tv.tv_sec + (double)t->tv.tv_usec;
}
double _ncvMomentsDiffToMicroseconds(NcvTimeMoment *t1, NcvTimeMoment *t2)
{
return (((double)t2->tv.tv_sec - (double)t1->tv.tv_sec) * 1000000 + (double)t2->tv.tv_usec - (double)t1->tv.tv_usec);
}
double _ncvMomentsDiffToMilliseconds(NcvTimeMoment *t1, NcvTimeMoment *t2)
{
return ((double)t2->tv.tv_sec - (double)t1->tv.tv_sec) * 1000;
}
#endif //#if defined(_WIN32) || defined(_WIN64)
struct _NcvTimer
{
NcvTimeMoment t1, t2;
};
NcvTimer ncvStartTimer(void)
{
struct _NcvTimer *t;
t = (struct _NcvTimer *)malloc(sizeof(struct _NcvTimer));
_ncvQueryMoment(&t->t1);
return t;
}
double ncvEndQueryTimerUs(NcvTimer t)
{
double res;
_ncvQueryMoment(&t->t2);
res = _ncvMomentsDiffToMicroseconds(&t->t1, &t->t2);
free(t);
return res;
}
double ncvEndQueryTimerMs(NcvTimer t)
{
double res;
_ncvQueryMoment(&t->t2);
res = _ncvMomentsDiffToMilliseconds(&t->t1, &t->t2);
free(t);
return res;
}
//===================================================================
//
// Operations with rectangles
//
//===================================================================
struct RectConvert
{
cv::Rect operator()(const NcvRect32u& nr) const { return cv::Rect(nr.x, nr.y, nr.width, nr.height); }
NcvRect32u operator()(const cv::Rect& nr) const
{
NcvRect32u rect;
rect.x = nr.x;
rect.y = nr.y;
rect.width = nr.width;
rect.height = nr.height;
return rect;
}
};
static void groupRectangles(std::vector<NcvRect32u> &hypotheses, int groupThreshold, double eps, std::vector<Ncv32u> *weights)
{
#ifndef HAVE_OPENCV_OBJDETECT
CV_UNUSED(hypotheses);
CV_UNUSED(groupThreshold);
CV_UNUSED(eps);
CV_UNUSED(weights);
CV_Error(cv::Error::StsNotImplemented, "This functionality requires objdetect module");
#else
std::vector<cv::Rect> rects(hypotheses.size());
std::transform(hypotheses.begin(), hypotheses.end(), rects.begin(), RectConvert());
if (weights)
{
std::vector<int> weights_int;
weights_int.assign(weights->begin(), weights->end());
cv::groupRectangles(rects, weights_int, groupThreshold, eps);
}
else
{
cv::groupRectangles(rects, groupThreshold, eps);
}
std::transform(rects.begin(), rects.end(), hypotheses.begin(), RectConvert());
hypotheses.resize(rects.size());
#endif
}
NCVStatus ncvGroupRectangles_host(NCVVector<NcvRect32u> &hypotheses,
Ncv32u &numHypotheses,
Ncv32u minNeighbors,
Ncv32f intersectEps,
NCVVector<Ncv32u> *hypothesesWeights)
{
ncvAssertReturn(hypotheses.memType() == NCVMemoryTypeHostPageable ||
hypotheses.memType() == NCVMemoryTypeHostPinned, NCV_MEM_RESIDENCE_ERROR);
if (hypothesesWeights != NULL)
{
ncvAssertReturn(hypothesesWeights->memType() == NCVMemoryTypeHostPageable ||
hypothesesWeights->memType() == NCVMemoryTypeHostPinned, NCV_MEM_RESIDENCE_ERROR);
}
if (numHypotheses == 0)
{
return NCV_SUCCESS;
}
std::vector<NcvRect32u> rects(numHypotheses);
memcpy(&rects[0], hypotheses.ptr(), numHypotheses * sizeof(NcvRect32u));
std::vector<Ncv32u> weights;
if (hypothesesWeights != NULL)
{
groupRectangles(rects, minNeighbors, intersectEps, &weights);
}
else
{
groupRectangles(rects, minNeighbors, intersectEps, NULL);
}
numHypotheses = (Ncv32u)rects.size();
if (numHypotheses > 0)
{
memcpy(hypotheses.ptr(), &rects[0], numHypotheses * sizeof(NcvRect32u));
}
if (hypothesesWeights != NULL)
{
memcpy(hypothesesWeights->ptr(), &weights[0], numHypotheses * sizeof(Ncv32u));
}
return NCV_SUCCESS;
}
template <class T>
static NCVStatus drawRectsWrapperHost(T *h_dst,
Ncv32u dstStride,
Ncv32u dstWidth,
Ncv32u dstHeight,
NcvRect32u *h_rects,
Ncv32u numRects,
T color)
{
ncvAssertReturn(h_dst != NULL && h_rects != NULL, NCV_NULL_PTR);
ncvAssertReturn(dstWidth > 0 && dstHeight > 0, NCV_DIMENSIONS_INVALID);
ncvAssertReturn(dstStride >= dstWidth, NCV_INVALID_STEP);
ncvAssertReturn(numRects != 0, NCV_SUCCESS);
ncvAssertReturn(numRects <= dstWidth * dstHeight, NCV_DIMENSIONS_INVALID);
for (Ncv32u i=0; i<numRects; i++)
{
NcvRect32u rect = h_rects[i];
if (rect.x < dstWidth)
{
for (Ncv32u each=rect.y; each<rect.y+rect.height && each<dstHeight; each++)
{
h_dst[each*dstStride+rect.x] = color;
}
}
if (rect.x+rect.width-1 < dstWidth)
{
for (Ncv32u each=rect.y; each<rect.y+rect.height && each<dstHeight; each++)
{
h_dst[each*dstStride+rect.x+rect.width-1] = color;
}
}
if (rect.y < dstHeight)
{
for (Ncv32u j=rect.x; j<rect.x+rect.width && j<dstWidth; j++)
{
h_dst[rect.y*dstStride+j] = color;
}
}
if (rect.y + rect.height - 1 < dstHeight)
{
for (Ncv32u j=rect.x; j<rect.x+rect.width && j<dstWidth; j++)
{
h_dst[(rect.y+rect.height-1)*dstStride+j] = color;
}
}
}
return NCV_SUCCESS;
}
NCVStatus ncvDrawRects_8u_host(Ncv8u *h_dst,
Ncv32u dstStride,
Ncv32u dstWidth,
Ncv32u dstHeight,
NcvRect32u *h_rects,
Ncv32u numRects,
Ncv8u color)
{
return drawRectsWrapperHost(h_dst, dstStride, dstWidth, dstHeight, h_rects, numRects, color);
}
NCVStatus ncvDrawRects_32u_host(Ncv32u *h_dst,
Ncv32u dstStride,
Ncv32u dstWidth,
Ncv32u dstHeight,
NcvRect32u *h_rects,
Ncv32u numRects,
Ncv32u color)
{
return drawRectsWrapperHost(h_dst, dstStride, dstWidth, dstHeight, h_rects, numRects, color);
}