opencv/modules/dnn/src/cuda/eltwise_ops.cu
Yashas Samaga B L d0e6d2438c
Merge pull request #17363 from YashasSamaga:cuda4dnn-eltwise-fusion2
cuda4dnn(conv): fuse eltwise with convolutions

* fuse eltwise with convolutions

* manually rebase to avoid bad git merge
2020-07-09 16:02:21 +03:00

111 lines
4.7 KiB
Plaintext

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include "functors.hpp"
#include "grid_stride_range.hpp"
#include "execution.hpp"
#include "vector_traits.hpp"
#include "../cuda4dnn/csl/stream.hpp"
#include "../cuda4dnn/csl/span.hpp"
#include <opencv2/core.hpp>
using namespace cv::dnn::cuda4dnn::csl;
using namespace cv::dnn::cuda4dnn::csl::device;
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
namespace raw {
template <class T, class EltwiseOp, std::size_t N>
__global__ void eltwise_op_vec(Span<T> output, View<T> x, View<T> y, const typename EltwiseOp::Params params) {
using vector_type = get_vector_type_t<T, N>;
auto output_vPtr = vector_type::get_pointer(output.data());
auto x_vPtr = vector_type::get_pointer(x.data());
auto y_vPtr = vector_type::get_pointer(y.data());
EltwiseOp eltwise_op(params);
for (auto i : grid_stride_range(output.size() / vector_type::size())) {
vector_type vec_x, vec_y;
v_load(vec_x, x_vPtr[i]);
v_load(vec_y, y_vPtr[i]);
for (int j = 0; j < vector_type::size(); j++)
vec_x.data[j] = eltwise_op(vec_x.data[j], vec_y.data[j]);
v_store(output_vPtr[i], vec_x);
}
}
}
template <class T, class EltwiseOp, std::size_t N> static
void launch_vectorized_eltwise_op(const Stream& stream, Span<T> output, View<T> x, View<T> y, const typename EltwiseOp::Params& params) {
CV_Assert(x.size() == y.size());
CV_Assert(x.size() == output.size());
CV_Assert(is_fully_aligned<T>(output, N));
CV_Assert(is_fully_aligned<T>(x, N));
CV_Assert(is_fully_aligned<T>(y, N));
auto kernel = raw::eltwise_op_vec<T, EltwiseOp, N>;
auto policy = make_policy(kernel, output.size() / N, 0, stream);
launch_kernel(kernel, policy, output, x, y, params);
}
template <class T, class EltwiseOp> static
void eltwise_op(const Stream& stream, Span<T> output, View<T> x, View<T> y, const typename EltwiseOp::Params& params = {}) {
CV_Assert(x.size() == y.size());
CV_Assert(x.size() == output.size());
if (is_fully_aligned<T>(output, 4) && is_fully_aligned<T>(x, 4) && is_fully_aligned<T>(y, 4)) {
launch_vectorized_eltwise_op<T, EltwiseOp, 4>(stream, output, x, y, params);
} else if (is_fully_aligned<T>(output, 2) && is_fully_aligned<T>(x, 2) && is_fully_aligned<T>(y, 2)) {
launch_vectorized_eltwise_op<T, EltwiseOp, 2>(stream, output, x, y, params);
} else {
launch_vectorized_eltwise_op<T, EltwiseOp, 1>(stream, output, x, y, params);
}
}
template <class T>
void eltwise_max_2(const Stream& stream, Span<T> output, View<T> x, View<T> y) {
eltwise_op<T, MaxFunctor<T>>(stream, output, x, y);
}
template <class T>
void eltwise_sum_2(const Stream& stream, Span<T> output, View<T> x, View<T> y) {
eltwise_op<T, SumFunctor<T>>(stream, output, x, y);
}
template <class T>
void eltwise_sum_coeff_2(const Stream& stream, Span<T> output, T coeff_x, View<T> x, T coeff_y, View<T> y) {
eltwise_op<T, ScaledSumFunctor<T>>(stream, output, x, y, {coeff_x, coeff_y});
}
template <class T>
void eltwise_prod_2(const Stream& stream, Span<T> output, View<T> x, View<T> y) {
eltwise_op<T, ProductFunctor<T>>(stream, output, x, y);
}
template <class T>
void eltwise_div_2(const Stream& stream, Span<T> output, View<T> x, View<T> y) {
eltwise_op<T, DivFunctor<T>>(stream, output, x, y);
}
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530)
template void eltwise_div_2(const Stream& stream, Span<__half> output, View<__half> x, View<__half> y);
template void eltwise_prod_2(const Stream& stream, Span<__half> output, View<__half> x, View<__half> y);
template void eltwise_sum_coeff_2(const Stream&, Span<__half>, __half, View<__half>, __half, View<__half>);
template void eltwise_sum_2(const Stream& stream, Span<__half> output, View<__half> x, View<__half> y);
template void eltwise_max_2(const Stream& stream, Span<__half> output, View<__half> x, View<__half> y);
#endif
template void eltwise_div_2(const Stream& stream, Span<float> output, View<float> x, View<float> y);
template void eltwise_prod_2(const Stream& stream, Span<float> output, View<float> x, View<float> y);
template void eltwise_sum_coeff_2(const Stream&, Span<float>, float, View<float>, float, View<float>);
template void eltwise_sum_2(const Stream& stream, Span<float> output, View<float> x, View<float> y);
template void eltwise_max_2(const Stream& stream, Span<float> output, View<float> x, View<float> y);
}}}} /* namespace cv::dnn::cuda4dnn::kernels */