opencv/3rdparty/lapack/dlartg.c

181 lines
4.4 KiB
C

#include "clapack.h"
/* Subroutine */ int dlartg_(doublereal *f, doublereal *g, doublereal *cs,
doublereal *sn, doublereal *r__)
{
/* System generated locals */
integer i__1;
doublereal d__1, d__2;
/* Builtin functions */
double log(doublereal), pow_di(doublereal *, integer *), sqrt(doublereal);
/* Local variables */
integer i__;
doublereal f1, g1, scale;
integer count;
static doublereal safmn2, safmx2;
extern doublereal dlamch_(char *);
static doublereal safmin, eps;
static volatile logical first = TRUE_;
/* -- LAPACK auxiliary routine (version 3.1) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DLARTG generate a plane rotation so that */
/* [ CS SN ] . [ F ] = [ R ] where CS**2 + SN**2 = 1. */
/* [ -SN CS ] [ G ] [ 0 ] */
/* This is a slower, more accurate version of the BLAS1 routine DROTG, */
/* with the following other differences: */
/* F and G are unchanged on return. */
/* If G=0, then CS=1 and SN=0. */
/* If F=0 and (G .ne. 0), then CS=0 and SN=1 without doing any */
/* floating point operations (saves work in DBDSQR when */
/* there are zeros on the diagonal). */
/* If F exceeds G in magnitude, CS will be positive. */
/* Arguments */
/* ========= */
/* F (input) DOUBLE PRECISION */
/* The first component of vector to be rotated. */
/* G (input) DOUBLE PRECISION */
/* The second component of vector to be rotated. */
/* CS (output) DOUBLE PRECISION */
/* The cosine of the rotation. */
/* SN (output) DOUBLE PRECISION */
/* The sine of the rotation. */
/* R (output) DOUBLE PRECISION */
/* The nonzero component of the rotated vector. */
/* This version has a few statements commented out for thread safety */
/* (machine parameters are computed on each entry). 10 feb 03, SJH. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* LOGICAL FIRST */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Save statement .. */
/* SAVE FIRST, SAFMX2, SAFMIN, SAFMN2 */
/* .. */
/* .. Data statements .. */
/* DATA FIRST / .TRUE. / */
/* .. */
/* .. Executable Statements .. */
/* IF( FIRST ) THEN */
if (first) {
safmin = dlamch_("S");
eps = dlamch_("E");
d__1 = dlamch_("B");
i__1 = (integer) (log(safmin / eps) / log(dlamch_("B")) / 2.);
safmn2 = pow_di(&d__1, &i__1);
safmx2 = 1. / safmn2;
first = FALSE_;
}
/* FIRST = .FALSE. */
/* END IF */
if (*g == 0.) {
*cs = 1.;
*sn = 0.;
*r__ = *f;
} else if (*f == 0.) {
*cs = 0.;
*sn = 1.;
*r__ = *g;
} else {
f1 = *f;
g1 = *g;
/* Computing MAX */
d__1 = abs(f1), d__2 = abs(g1);
scale = max(d__1,d__2);
if (scale >= safmx2) {
count = 0;
L10:
++count;
f1 *= safmn2;
g1 *= safmn2;
/* Computing MAX */
d__1 = abs(f1), d__2 = abs(g1);
scale = max(d__1,d__2);
if (scale >= safmx2) {
goto L10;
}
/* Computing 2nd power */
d__1 = f1;
/* Computing 2nd power */
d__2 = g1;
*r__ = sqrt(d__1 * d__1 + d__2 * d__2);
*cs = f1 / *r__;
*sn = g1 / *r__;
i__1 = count;
for (i__ = 1; i__ <= i__1; ++i__) {
*r__ *= safmx2;
/* L20: */
}
} else if (scale <= safmn2) {
count = 0;
L30:
++count;
f1 *= safmx2;
g1 *= safmx2;
/* Computing MAX */
d__1 = abs(f1), d__2 = abs(g1);
scale = max(d__1,d__2);
if (scale <= safmn2) {
goto L30;
}
/* Computing 2nd power */
d__1 = f1;
/* Computing 2nd power */
d__2 = g1;
*r__ = sqrt(d__1 * d__1 + d__2 * d__2);
*cs = f1 / *r__;
*sn = g1 / *r__;
i__1 = count;
for (i__ = 1; i__ <= i__1; ++i__) {
*r__ *= safmn2;
/* L40: */
}
} else {
/* Computing 2nd power */
d__1 = f1;
/* Computing 2nd power */
d__2 = g1;
*r__ = sqrt(d__1 * d__1 + d__2 * d__2);
*cs = f1 / *r__;
*sn = g1 / *r__;
}
if (abs(*f) > abs(*g) && *cs < 0.) {
*cs = -(*cs);
*sn = -(*sn);
*r__ = -(*r__);
}
}
return 0;
/* End of DLARTG */
} /* dlartg_ */