mirror of
https://github.com/opencv/opencv.git
synced 2024-12-19 03:58:31 +08:00
301 lines
7.4 KiB
C
301 lines
7.4 KiB
C
#include "clapack.h"
|
|
|
|
/* Subroutine */ int dsymv_(char *uplo, integer *n, doublereal *alpha,
|
|
doublereal *a, integer *lda, doublereal *x, integer *incx, doublereal
|
|
*beta, doublereal *y, integer *incy)
|
|
{
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, i__1, i__2;
|
|
|
|
/* Local variables */
|
|
integer i__, j, ix, iy, jx, jy, kx, ky, info;
|
|
doublereal temp1, temp2;
|
|
extern logical lsame_(char *, char *);
|
|
extern /* Subroutine */ int xerbla_(char *, integer *);
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* Purpose */
|
|
/* ======= */
|
|
|
|
/* DSYMV performs the matrix-vector operation */
|
|
|
|
/* y := alpha*A*x + beta*y, */
|
|
|
|
/* where alpha and beta are scalars, x and y are n element vectors and */
|
|
/* A is an n by n symmetric matrix. */
|
|
|
|
/* Arguments */
|
|
/* ========== */
|
|
|
|
/* UPLO - CHARACTER*1. */
|
|
/* On entry, UPLO specifies whether the upper or lower */
|
|
/* triangular part of the array A is to be referenced as */
|
|
/* follows: */
|
|
|
|
/* UPLO = 'U' or 'u' Only the upper triangular part of A */
|
|
/* is to be referenced. */
|
|
|
|
/* UPLO = 'L' or 'l' Only the lower triangular part of A */
|
|
/* is to be referenced. */
|
|
|
|
/* Unchanged on exit. */
|
|
|
|
/* N - INTEGER. */
|
|
/* On entry, N specifies the order of the matrix A. */
|
|
/* N must be at least zero. */
|
|
/* Unchanged on exit. */
|
|
|
|
/* ALPHA - DOUBLE PRECISION. */
|
|
/* On entry, ALPHA specifies the scalar alpha. */
|
|
/* Unchanged on exit. */
|
|
|
|
/* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). */
|
|
/* Before entry with UPLO = 'U' or 'u', the leading n by n */
|
|
/* upper triangular part of the array A must contain the upper */
|
|
/* triangular part of the symmetric matrix and the strictly */
|
|
/* lower triangular part of A is not referenced. */
|
|
/* Before entry with UPLO = 'L' or 'l', the leading n by n */
|
|
/* lower triangular part of the array A must contain the lower */
|
|
/* triangular part of the symmetric matrix and the strictly */
|
|
/* upper triangular part of A is not referenced. */
|
|
/* Unchanged on exit. */
|
|
|
|
/* LDA - INTEGER. */
|
|
/* On entry, LDA specifies the first dimension of A as declared */
|
|
/* in the calling (sub) program. LDA must be at least */
|
|
/* max( 1, n ). */
|
|
/* Unchanged on exit. */
|
|
|
|
/* X - DOUBLE PRECISION array of dimension at least */
|
|
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
|
|
/* Before entry, the incremented array X must contain the n */
|
|
/* element vector x. */
|
|
/* Unchanged on exit. */
|
|
|
|
/* INCX - INTEGER. */
|
|
/* On entry, INCX specifies the increment for the elements of */
|
|
/* X. INCX must not be zero. */
|
|
/* Unchanged on exit. */
|
|
|
|
/* BETA - DOUBLE PRECISION. */
|
|
/* On entry, BETA specifies the scalar beta. When BETA is */
|
|
/* supplied as zero then Y need not be set on input. */
|
|
/* Unchanged on exit. */
|
|
|
|
/* Y - DOUBLE PRECISION array of dimension at least */
|
|
/* ( 1 + ( n - 1 )*abs( INCY ) ). */
|
|
/* Before entry, the incremented array Y must contain the n */
|
|
/* element vector y. On exit, Y is overwritten by the updated */
|
|
/* vector y. */
|
|
|
|
/* INCY - INTEGER. */
|
|
/* On entry, INCY specifies the increment for the elements of */
|
|
/* Y. INCY must not be zero. */
|
|
/* Unchanged on exit. */
|
|
|
|
|
|
/* Level 2 Blas routine. */
|
|
|
|
/* -- Written on 22-October-1986. */
|
|
/* Jack Dongarra, Argonne National Lab. */
|
|
/* Jeremy Du Croz, Nag Central Office. */
|
|
/* Sven Hammarling, Nag Central Office. */
|
|
/* Richard Hanson, Sandia National Labs. */
|
|
|
|
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
|
|
/* Test the input parameters. */
|
|
|
|
/* Parameter adjustments */
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1;
|
|
a -= a_offset;
|
|
--x;
|
|
--y;
|
|
|
|
/* Function Body */
|
|
info = 0;
|
|
if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
|
|
info = 1;
|
|
} else if (*n < 0) {
|
|
info = 2;
|
|
} else if (*lda < max(1,*n)) {
|
|
info = 5;
|
|
} else if (*incx == 0) {
|
|
info = 7;
|
|
} else if (*incy == 0) {
|
|
info = 10;
|
|
}
|
|
if (info != 0) {
|
|
xerbla_("DSYMV ", &info);
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible. */
|
|
|
|
if (*n == 0 || *alpha == 0. && *beta == 1.) {
|
|
return 0;
|
|
}
|
|
|
|
/* Set up the start points in X and Y. */
|
|
|
|
if (*incx > 0) {
|
|
kx = 1;
|
|
} else {
|
|
kx = 1 - (*n - 1) * *incx;
|
|
}
|
|
if (*incy > 0) {
|
|
ky = 1;
|
|
} else {
|
|
ky = 1 - (*n - 1) * *incy;
|
|
}
|
|
|
|
/* Start the operations. In this version the elements of A are */
|
|
/* accessed sequentially with one pass through the triangular part */
|
|
/* of A. */
|
|
|
|
/* First form y := beta*y. */
|
|
|
|
if (*beta != 1.) {
|
|
if (*incy == 1) {
|
|
if (*beta == 0.) {
|
|
i__1 = *n;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
y[i__] = 0.;
|
|
/* L10: */
|
|
}
|
|
} else {
|
|
i__1 = *n;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
y[i__] = *beta * y[i__];
|
|
/* L20: */
|
|
}
|
|
}
|
|
} else {
|
|
iy = ky;
|
|
if (*beta == 0.) {
|
|
i__1 = *n;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
y[iy] = 0.;
|
|
iy += *incy;
|
|
/* L30: */
|
|
}
|
|
} else {
|
|
i__1 = *n;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
y[iy] = *beta * y[iy];
|
|
iy += *incy;
|
|
/* L40: */
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (*alpha == 0.) {
|
|
return 0;
|
|
}
|
|
if (lsame_(uplo, "U")) {
|
|
|
|
/* Form y when A is stored in upper triangle. */
|
|
|
|
if (*incx == 1 && *incy == 1) {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
temp1 = *alpha * x[j];
|
|
temp2 = 0.;
|
|
i__2 = j - 1;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
y[i__] += temp1 * a[i__ + j * a_dim1];
|
|
temp2 += a[i__ + j * a_dim1] * x[i__];
|
|
/* L50: */
|
|
}
|
|
y[j] = y[j] + temp1 * a[j + j * a_dim1] + *alpha * temp2;
|
|
/* L60: */
|
|
}
|
|
} else {
|
|
jx = kx;
|
|
jy = ky;
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
temp1 = *alpha * x[jx];
|
|
temp2 = 0.;
|
|
ix = kx;
|
|
iy = ky;
|
|
i__2 = j - 1;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
y[iy] += temp1 * a[i__ + j * a_dim1];
|
|
temp2 += a[i__ + j * a_dim1] * x[ix];
|
|
ix += *incx;
|
|
iy += *incy;
|
|
/* L70: */
|
|
}
|
|
y[jy] = y[jy] + temp1 * a[j + j * a_dim1] + *alpha * temp2;
|
|
jx += *incx;
|
|
jy += *incy;
|
|
/* L80: */
|
|
}
|
|
}
|
|
} else {
|
|
|
|
/* Form y when A is stored in lower triangle. */
|
|
|
|
if (*incx == 1 && *incy == 1) {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
temp1 = *alpha * x[j];
|
|
temp2 = 0.;
|
|
y[j] += temp1 * a[j + j * a_dim1];
|
|
i__2 = *n;
|
|
for (i__ = j + 1; i__ <= i__2; ++i__) {
|
|
y[i__] += temp1 * a[i__ + j * a_dim1];
|
|
temp2 += a[i__ + j * a_dim1] * x[i__];
|
|
/* L90: */
|
|
}
|
|
y[j] += *alpha * temp2;
|
|
/* L100: */
|
|
}
|
|
} else {
|
|
jx = kx;
|
|
jy = ky;
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
temp1 = *alpha * x[jx];
|
|
temp2 = 0.;
|
|
y[jy] += temp1 * a[j + j * a_dim1];
|
|
ix = jx;
|
|
iy = jy;
|
|
i__2 = *n;
|
|
for (i__ = j + 1; i__ <= i__2; ++i__) {
|
|
ix += *incx;
|
|
iy += *incy;
|
|
y[iy] += temp1 * a[i__ + j * a_dim1];
|
|
temp2 += a[i__ + j * a_dim1] * x[ix];
|
|
/* L110: */
|
|
}
|
|
y[jy] += *alpha * temp2;
|
|
jx += *incx;
|
|
jy += *incy;
|
|
/* L120: */
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
/* End of DSYMV . */
|
|
|
|
} /* dsymv_ */
|