mirror of
https://github.com/opencv/opencv.git
synced 2024-12-18 11:28:02 +08:00
578 lines
16 KiB
C
578 lines
16 KiB
C
#include "clapack.h"
|
|
|
|
/* Subroutine */ int dsytf2_(char *uplo, integer *n, doublereal *a, integer *
|
|
lda, integer *ipiv, integer *info)
|
|
{
|
|
/* -- LAPACK routine (version 3.1) --
|
|
Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
|
|
November 2006
|
|
|
|
|
|
Purpose
|
|
=======
|
|
|
|
DSYTF2 computes the factorization of a real symmetric matrix A using
|
|
the Bunch-Kaufman diagonal pivoting method:
|
|
|
|
A = U*D*U' or A = L*D*L'
|
|
|
|
where U (or L) is a product of permutation and unit upper (lower)
|
|
triangular matrices, U' is the transpose of U, and D is symmetric and
|
|
block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
|
|
|
|
This is the unblocked version of the algorithm, calling Level 2 BLAS.
|
|
|
|
Arguments
|
|
=========
|
|
|
|
UPLO (input) CHARACTER*1
|
|
Specifies whether the upper or lower triangular part of the
|
|
symmetric matrix A is stored:
|
|
= 'U': Upper triangular
|
|
= 'L': Lower triangular
|
|
|
|
N (input) INTEGER
|
|
The order of the matrix A. N >= 0.
|
|
|
|
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
|
|
On entry, the symmetric matrix A. If UPLO = 'U', the leading
|
|
n-by-n upper triangular part of A contains the upper
|
|
triangular part of the matrix A, and the strictly lower
|
|
triangular part of A is not referenced. If UPLO = 'L', the
|
|
leading n-by-n lower triangular part of A contains the lower
|
|
triangular part of the matrix A, and the strictly upper
|
|
triangular part of A is not referenced.
|
|
|
|
On exit, the block diagonal matrix D and the multipliers used
|
|
to obtain the factor U or L (see below for further details).
|
|
|
|
LDA (input) INTEGER
|
|
The leading dimension of the array A. LDA >= max(1,N).
|
|
|
|
IPIV (output) INTEGER array, dimension (N)
|
|
Details of the interchanges and the block structure of D.
|
|
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
|
|
interchanged and D(k,k) is a 1-by-1 diagonal block.
|
|
If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
|
|
columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
|
|
is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
|
|
IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
|
|
interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
|
|
|
|
INFO (output) INTEGER
|
|
= 0: successful exit
|
|
< 0: if INFO = -k, the k-th argument had an illegal value
|
|
> 0: if INFO = k, D(k,k) is exactly zero. The factorization
|
|
has been completed, but the block diagonal matrix D is
|
|
exactly singular, and division by zero will occur if it
|
|
is used to solve a system of equations.
|
|
|
|
Further Details
|
|
===============
|
|
|
|
09-29-06 - patch from
|
|
Bobby Cheng, MathWorks
|
|
|
|
Replace l.204 and l.372
|
|
IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
|
|
by
|
|
IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
|
|
|
|
01-01-96 - Based on modifications by
|
|
J. Lewis, Boeing Computer Services Company
|
|
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
|
|
1-96 - Based on modifications by J. Lewis, Boeing Computer Services
|
|
Company
|
|
|
|
If UPLO = 'U', then A = U*D*U', where
|
|
U = P(n)*U(n)* ... *P(k)U(k)* ...,
|
|
i.e., U is a product of terms P(k)*U(k), where k decreases from n to
|
|
1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
|
|
and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
|
|
defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
|
|
that if the diagonal block D(k) is of order s (s = 1 or 2), then
|
|
|
|
( I v 0 ) k-s
|
|
U(k) = ( 0 I 0 ) s
|
|
( 0 0 I ) n-k
|
|
k-s s n-k
|
|
|
|
If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
|
|
If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
|
|
and A(k,k), and v overwrites A(1:k-2,k-1:k).
|
|
|
|
If UPLO = 'L', then A = L*D*L', where
|
|
L = P(1)*L(1)* ... *P(k)*L(k)* ...,
|
|
i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
|
|
n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
|
|
and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
|
|
defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
|
|
that if the diagonal block D(k) is of order s (s = 1 or 2), then
|
|
|
|
( I 0 0 ) k-1
|
|
L(k) = ( 0 I 0 ) s
|
|
( 0 v I ) n-k-s+1
|
|
k-1 s n-k-s+1
|
|
|
|
If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
|
|
If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
|
|
and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
|
|
|
|
=====================================================================
|
|
|
|
|
|
Test the input parameters.
|
|
|
|
Parameter adjustments */
|
|
/* Table of constant values */
|
|
static integer c__1 = 1;
|
|
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, i__1, i__2;
|
|
doublereal d__1, d__2, d__3;
|
|
/* Builtin functions */
|
|
double sqrt(doublereal);
|
|
/* Local variables */
|
|
static integer i__, j, k;
|
|
static doublereal t, r1, d11, d12, d21, d22;
|
|
static integer kk, kp;
|
|
static doublereal wk, wkm1, wkp1;
|
|
static integer imax, jmax;
|
|
extern /* Subroutine */ int dsyr_(char *, integer *, doublereal *,
|
|
doublereal *, integer *, doublereal *, integer *);
|
|
static doublereal alpha;
|
|
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
|
|
integer *);
|
|
extern logical lsame_(char *, char *);
|
|
extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *,
|
|
doublereal *, integer *);
|
|
static integer kstep;
|
|
static logical upper;
|
|
static doublereal absakk;
|
|
extern integer idamax_(integer *, doublereal *, integer *);
|
|
extern logical disnan_(doublereal *);
|
|
extern /* Subroutine */ int xerbla_(char *, integer *);
|
|
static doublereal colmax, rowmax;
|
|
|
|
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1;
|
|
a -= a_offset;
|
|
--ipiv;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
upper = lsame_(uplo, "U");
|
|
if (! upper && ! lsame_(uplo, "L")) {
|
|
*info = -1;
|
|
} else if (*n < 0) {
|
|
*info = -2;
|
|
} else if (*lda < max(1,*n)) {
|
|
*info = -4;
|
|
}
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("DSYTF2", &i__1);
|
|
return 0;
|
|
}
|
|
|
|
/* Initialize ALPHA for use in choosing pivot block size. */
|
|
|
|
alpha = (sqrt(17.) + 1.) / 8.;
|
|
|
|
if (upper) {
|
|
|
|
/* Factorize A as U*D*U' using the upper triangle of A
|
|
|
|
K is the main loop index, decreasing from N to 1 in steps of
|
|
1 or 2 */
|
|
|
|
k = *n;
|
|
L10:
|
|
|
|
/* If K < 1, exit from loop */
|
|
|
|
if (k < 1) {
|
|
goto L70;
|
|
}
|
|
kstep = 1;
|
|
|
|
/* Determine rows and columns to be interchanged and whether
|
|
a 1-by-1 or 2-by-2 pivot block will be used */
|
|
|
|
absakk = (d__1 = a[k + k * a_dim1], abs(d__1));
|
|
|
|
/* IMAX is the row-index of the largest off-diagonal element in
|
|
column K, and COLMAX is its absolute value */
|
|
|
|
if (k > 1) {
|
|
i__1 = k - 1;
|
|
imax = idamax_(&i__1, &a[k * a_dim1 + 1], &c__1);
|
|
colmax = (d__1 = a[imax + k * a_dim1], abs(d__1));
|
|
} else {
|
|
colmax = 0.;
|
|
}
|
|
|
|
if (max(absakk,colmax) == 0. || disnan_(&absakk)) {
|
|
|
|
/* Column K is zero or contains a NaN: set INFO and continue */
|
|
|
|
if (*info == 0) {
|
|
*info = k;
|
|
}
|
|
kp = k;
|
|
} else {
|
|
if (absakk >= alpha * colmax) {
|
|
|
|
/* no interchange, use 1-by-1 pivot block */
|
|
|
|
kp = k;
|
|
} else {
|
|
|
|
/* JMAX is the column-index of the largest off-diagonal
|
|
element in row IMAX, and ROWMAX is its absolute value */
|
|
|
|
i__1 = k - imax;
|
|
jmax = imax + idamax_(&i__1, &a[imax + (imax + 1) * a_dim1],
|
|
lda);
|
|
rowmax = (d__1 = a[imax + jmax * a_dim1], abs(d__1));
|
|
if (imax > 1) {
|
|
i__1 = imax - 1;
|
|
jmax = idamax_(&i__1, &a[imax * a_dim1 + 1], &c__1);
|
|
/* Computing MAX */
|
|
d__2 = rowmax, d__3 = (d__1 = a[jmax + imax * a_dim1],
|
|
abs(d__1));
|
|
rowmax = max(d__2,d__3);
|
|
}
|
|
|
|
if (absakk >= alpha * colmax * (colmax / rowmax)) {
|
|
|
|
/* no interchange, use 1-by-1 pivot block */
|
|
|
|
kp = k;
|
|
} else if ((d__1 = a[imax + imax * a_dim1], abs(d__1)) >=
|
|
alpha * rowmax) {
|
|
|
|
/* interchange rows and columns K and IMAX, use 1-by-1
|
|
pivot block */
|
|
|
|
kp = imax;
|
|
} else {
|
|
|
|
/* interchange rows and columns K-1 and IMAX, use 2-by-2
|
|
pivot block */
|
|
|
|
kp = imax;
|
|
kstep = 2;
|
|
}
|
|
}
|
|
|
|
kk = k - kstep + 1;
|
|
if (kp != kk) {
|
|
|
|
/* Interchange rows and columns KK and KP in the leading
|
|
submatrix A(1:k,1:k) */
|
|
|
|
i__1 = kp - 1;
|
|
dswap_(&i__1, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1 + 1],
|
|
&c__1);
|
|
i__1 = kk - kp - 1;
|
|
dswap_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + (kp +
|
|
1) * a_dim1], lda);
|
|
t = a[kk + kk * a_dim1];
|
|
a[kk + kk * a_dim1] = a[kp + kp * a_dim1];
|
|
a[kp + kp * a_dim1] = t;
|
|
if (kstep == 2) {
|
|
t = a[k - 1 + k * a_dim1];
|
|
a[k - 1 + k * a_dim1] = a[kp + k * a_dim1];
|
|
a[kp + k * a_dim1] = t;
|
|
}
|
|
}
|
|
|
|
/* Update the leading submatrix */
|
|
|
|
if (kstep == 1) {
|
|
|
|
/* 1-by-1 pivot block D(k): column k now holds
|
|
|
|
W(k) = U(k)*D(k)
|
|
|
|
where U(k) is the k-th column of U
|
|
|
|
Perform a rank-1 update of A(1:k-1,1:k-1) as
|
|
|
|
A := A - U(k)*D(k)*U(k)' = A - W(k)*1/D(k)*W(k)' */
|
|
|
|
r1 = 1. / a[k + k * a_dim1];
|
|
i__1 = k - 1;
|
|
d__1 = -r1;
|
|
dsyr_(uplo, &i__1, &d__1, &a[k * a_dim1 + 1], &c__1, &a[
|
|
a_offset], lda);
|
|
|
|
/* Store U(k) in column k */
|
|
|
|
i__1 = k - 1;
|
|
dscal_(&i__1, &r1, &a[k * a_dim1 + 1], &c__1);
|
|
} else {
|
|
|
|
/* 2-by-2 pivot block D(k): columns k and k-1 now hold
|
|
|
|
( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
|
|
|
|
where U(k) and U(k-1) are the k-th and (k-1)-th columns
|
|
of U
|
|
|
|
Perform a rank-2 update of A(1:k-2,1:k-2) as
|
|
|
|
A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )'
|
|
= A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )' */
|
|
|
|
if (k > 2) {
|
|
|
|
d12 = a[k - 1 + k * a_dim1];
|
|
d22 = a[k - 1 + (k - 1) * a_dim1] / d12;
|
|
d11 = a[k + k * a_dim1] / d12;
|
|
t = 1. / (d11 * d22 - 1.);
|
|
d12 = t / d12;
|
|
|
|
for (j = k - 2; j >= 1; --j) {
|
|
wkm1 = d12 * (d11 * a[j + (k - 1) * a_dim1] - a[j + k
|
|
* a_dim1]);
|
|
wk = d12 * (d22 * a[j + k * a_dim1] - a[j + (k - 1) *
|
|
a_dim1]);
|
|
for (i__ = j; i__ >= 1; --i__) {
|
|
a[i__ + j * a_dim1] = a[i__ + j * a_dim1] - a[i__
|
|
+ k * a_dim1] * wk - a[i__ + (k - 1) *
|
|
a_dim1] * wkm1;
|
|
/* L20: */
|
|
}
|
|
a[j + k * a_dim1] = wk;
|
|
a[j + (k - 1) * a_dim1] = wkm1;
|
|
/* L30: */
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
/* Store details of the interchanges in IPIV */
|
|
|
|
if (kstep == 1) {
|
|
ipiv[k] = kp;
|
|
} else {
|
|
ipiv[k] = -kp;
|
|
ipiv[k - 1] = -kp;
|
|
}
|
|
|
|
/* Decrease K and return to the start of the main loop */
|
|
|
|
k -= kstep;
|
|
goto L10;
|
|
|
|
} else {
|
|
|
|
/* Factorize A as L*D*L' using the lower triangle of A
|
|
|
|
K is the main loop index, increasing from 1 to N in steps of
|
|
1 or 2 */
|
|
|
|
k = 1;
|
|
L40:
|
|
|
|
/* If K > N, exit from loop */
|
|
|
|
if (k > *n) {
|
|
goto L70;
|
|
}
|
|
kstep = 1;
|
|
|
|
/* Determine rows and columns to be interchanged and whether
|
|
a 1-by-1 or 2-by-2 pivot block will be used */
|
|
|
|
absakk = (d__1 = a[k + k * a_dim1], abs(d__1));
|
|
|
|
/* IMAX is the row-index of the largest off-diagonal element in
|
|
column K, and COLMAX is its absolute value */
|
|
|
|
if (k < *n) {
|
|
i__1 = *n - k;
|
|
imax = k + idamax_(&i__1, &a[k + 1 + k * a_dim1], &c__1);
|
|
colmax = (d__1 = a[imax + k * a_dim1], abs(d__1));
|
|
} else {
|
|
colmax = 0.;
|
|
}
|
|
|
|
if (max(absakk,colmax) == 0. || disnan_(&absakk)) {
|
|
|
|
/* Column K is zero or contains a NaN: set INFO and continue */
|
|
|
|
if (*info == 0) {
|
|
*info = k;
|
|
}
|
|
kp = k;
|
|
} else {
|
|
if (absakk >= alpha * colmax) {
|
|
|
|
/* no interchange, use 1-by-1 pivot block */
|
|
|
|
kp = k;
|
|
} else {
|
|
|
|
/* JMAX is the column-index of the largest off-diagonal
|
|
element in row IMAX, and ROWMAX is its absolute value */
|
|
|
|
i__1 = imax - k;
|
|
jmax = k - 1 + idamax_(&i__1, &a[imax + k * a_dim1], lda);
|
|
rowmax = (d__1 = a[imax + jmax * a_dim1], abs(d__1));
|
|
if (imax < *n) {
|
|
i__1 = *n - imax;
|
|
jmax = imax + idamax_(&i__1, &a[imax + 1 + imax * a_dim1],
|
|
&c__1);
|
|
/* Computing MAX */
|
|
d__2 = rowmax, d__3 = (d__1 = a[jmax + imax * a_dim1],
|
|
abs(d__1));
|
|
rowmax = max(d__2,d__3);
|
|
}
|
|
|
|
if (absakk >= alpha * colmax * (colmax / rowmax)) {
|
|
|
|
/* no interchange, use 1-by-1 pivot block */
|
|
|
|
kp = k;
|
|
} else if ((d__1 = a[imax + imax * a_dim1], abs(d__1)) >=
|
|
alpha * rowmax) {
|
|
|
|
/* interchange rows and columns K and IMAX, use 1-by-1
|
|
pivot block */
|
|
|
|
kp = imax;
|
|
} else {
|
|
|
|
/* interchange rows and columns K+1 and IMAX, use 2-by-2
|
|
pivot block */
|
|
|
|
kp = imax;
|
|
kstep = 2;
|
|
}
|
|
}
|
|
|
|
kk = k + kstep - 1;
|
|
if (kp != kk) {
|
|
|
|
/* Interchange rows and columns KK and KP in the trailing
|
|
submatrix A(k:n,k:n) */
|
|
|
|
if (kp < *n) {
|
|
i__1 = *n - kp;
|
|
dswap_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + 1
|
|
+ kp * a_dim1], &c__1);
|
|
}
|
|
i__1 = kp - kk - 1;
|
|
dswap_(&i__1, &a[kk + 1 + kk * a_dim1], &c__1, &a[kp + (kk +
|
|
1) * a_dim1], lda);
|
|
t = a[kk + kk * a_dim1];
|
|
a[kk + kk * a_dim1] = a[kp + kp * a_dim1];
|
|
a[kp + kp * a_dim1] = t;
|
|
if (kstep == 2) {
|
|
t = a[k + 1 + k * a_dim1];
|
|
a[k + 1 + k * a_dim1] = a[kp + k * a_dim1];
|
|
a[kp + k * a_dim1] = t;
|
|
}
|
|
}
|
|
|
|
/* Update the trailing submatrix */
|
|
|
|
if (kstep == 1) {
|
|
|
|
/* 1-by-1 pivot block D(k): column k now holds
|
|
|
|
W(k) = L(k)*D(k)
|
|
|
|
where L(k) is the k-th column of L */
|
|
|
|
if (k < *n) {
|
|
|
|
/* Perform a rank-1 update of A(k+1:n,k+1:n) as
|
|
|
|
A := A - L(k)*D(k)*L(k)' = A - W(k)*(1/D(k))*W(k)' */
|
|
|
|
d11 = 1. / a[k + k * a_dim1];
|
|
i__1 = *n - k;
|
|
d__1 = -d11;
|
|
dsyr_(uplo, &i__1, &d__1, &a[k + 1 + k * a_dim1], &c__1, &
|
|
a[k + 1 + (k + 1) * a_dim1], lda);
|
|
|
|
/* Store L(k) in column K */
|
|
|
|
i__1 = *n - k;
|
|
dscal_(&i__1, &d11, &a[k + 1 + k * a_dim1], &c__1);
|
|
}
|
|
} else {
|
|
|
|
/* 2-by-2 pivot block D(k) */
|
|
|
|
if (k < *n - 1) {
|
|
|
|
/* Perform a rank-2 update of A(k+2:n,k+2:n) as
|
|
|
|
A := A - ( (A(k) A(k+1))*D(k)**(-1) ) * (A(k) A(k+1))'
|
|
|
|
where L(k) and L(k+1) are the k-th and (k+1)-th
|
|
columns of L */
|
|
|
|
d21 = a[k + 1 + k * a_dim1];
|
|
d11 = a[k + 1 + (k + 1) * a_dim1] / d21;
|
|
d22 = a[k + k * a_dim1] / d21;
|
|
t = 1. / (d11 * d22 - 1.);
|
|
d21 = t / d21;
|
|
|
|
i__1 = *n;
|
|
for (j = k + 2; j <= i__1; ++j) {
|
|
|
|
wk = d21 * (d11 * a[j + k * a_dim1] - a[j + (k + 1) *
|
|
a_dim1]);
|
|
wkp1 = d21 * (d22 * a[j + (k + 1) * a_dim1] - a[j + k
|
|
* a_dim1]);
|
|
|
|
i__2 = *n;
|
|
for (i__ = j; i__ <= i__2; ++i__) {
|
|
a[i__ + j * a_dim1] = a[i__ + j * a_dim1] - a[i__
|
|
+ k * a_dim1] * wk - a[i__ + (k + 1) *
|
|
a_dim1] * wkp1;
|
|
/* L50: */
|
|
}
|
|
|
|
a[j + k * a_dim1] = wk;
|
|
a[j + (k + 1) * a_dim1] = wkp1;
|
|
|
|
/* L60: */
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Store details of the interchanges in IPIV */
|
|
|
|
if (kstep == 1) {
|
|
ipiv[k] = kp;
|
|
} else {
|
|
ipiv[k] = -kp;
|
|
ipiv[k + 1] = -kp;
|
|
}
|
|
|
|
/* Increase K and return to the start of the main loop */
|
|
|
|
k += kstep;
|
|
goto L40;
|
|
|
|
}
|
|
|
|
L70:
|
|
|
|
return 0;
|
|
|
|
/* End of DSYTF2 */
|
|
|
|
} /* dsytf2_ */
|