mirror of
https://github.com/opencv/opencv.git
synced 2024-12-18 11:28:02 +08:00
264 lines
7.7 KiB
C
264 lines
7.7 KiB
C
#include "clapack.h"
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c__1 = 1;
|
|
static real c_b8 = 0.f;
|
|
|
|
/* Subroutine */ int slarft_(char *direct, char *storev, integer *n, integer *
|
|
k, real *v, integer *ldv, real *tau, real *t, integer *ldt)
|
|
{
|
|
/* System generated locals */
|
|
integer t_dim1, t_offset, v_dim1, v_offset, i__1, i__2, i__3;
|
|
real r__1;
|
|
|
|
/* Local variables */
|
|
integer i__, j;
|
|
real vii;
|
|
extern logical lsame_(char *, char *);
|
|
extern /* Subroutine */ int sgemv_(char *, integer *, integer *, real *,
|
|
real *, integer *, real *, integer *, real *, real *, integer *), strmv_(char *, char *, char *, integer *, real *,
|
|
integer *, real *, integer *);
|
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.1) -- */
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
/* November 2006 */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* Purpose */
|
|
/* ======= */
|
|
|
|
/* SLARFT forms the triangular factor T of a real block reflector H */
|
|
/* of order n, which is defined as a product of k elementary reflectors. */
|
|
|
|
/* If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular; */
|
|
|
|
/* If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular. */
|
|
|
|
/* If STOREV = 'C', the vector which defines the elementary reflector */
|
|
/* H(i) is stored in the i-th column of the array V, and */
|
|
|
|
/* H = I - V * T * V' */
|
|
|
|
/* If STOREV = 'R', the vector which defines the elementary reflector */
|
|
/* H(i) is stored in the i-th row of the array V, and */
|
|
|
|
/* H = I - V' * T * V */
|
|
|
|
/* Arguments */
|
|
/* ========= */
|
|
|
|
/* DIRECT (input) CHARACTER*1 */
|
|
/* Specifies the order in which the elementary reflectors are */
|
|
/* multiplied to form the block reflector: */
|
|
/* = 'F': H = H(1) H(2) . . . H(k) (Forward) */
|
|
/* = 'B': H = H(k) . . . H(2) H(1) (Backward) */
|
|
|
|
/* STOREV (input) CHARACTER*1 */
|
|
/* Specifies how the vectors which define the elementary */
|
|
/* reflectors are stored (see also Further Details): */
|
|
/* = 'C': columnwise */
|
|
/* = 'R': rowwise */
|
|
|
|
/* N (input) INTEGER */
|
|
/* The order of the block reflector H. N >= 0. */
|
|
|
|
/* K (input) INTEGER */
|
|
/* The order of the triangular factor T (= the number of */
|
|
/* elementary reflectors). K >= 1. */
|
|
|
|
/* V (input/output) REAL array, dimension */
|
|
/* (LDV,K) if STOREV = 'C' */
|
|
/* (LDV,N) if STOREV = 'R' */
|
|
/* The matrix V. See further details. */
|
|
|
|
/* LDV (input) INTEGER */
|
|
/* The leading dimension of the array V. */
|
|
/* If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K. */
|
|
|
|
/* TAU (input) REAL array, dimension (K) */
|
|
/* TAU(i) must contain the scalar factor of the elementary */
|
|
/* reflector H(i). */
|
|
|
|
/* T (output) REAL array, dimension (LDT,K) */
|
|
/* The k by k triangular factor T of the block reflector. */
|
|
/* If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is */
|
|
/* lower triangular. The rest of the array is not used. */
|
|
|
|
/* LDT (input) INTEGER */
|
|
/* The leading dimension of the array T. LDT >= K. */
|
|
|
|
/* Further Details */
|
|
/* =============== */
|
|
|
|
/* The shape of the matrix V and the storage of the vectors which define */
|
|
/* the H(i) is best illustrated by the following example with n = 5 and */
|
|
/* k = 3. The elements equal to 1 are not stored; the corresponding */
|
|
/* array elements are modified but restored on exit. The rest of the */
|
|
/* array is not used. */
|
|
|
|
/* DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': */
|
|
|
|
/* V = ( 1 ) V = ( 1 v1 v1 v1 v1 ) */
|
|
/* ( v1 1 ) ( 1 v2 v2 v2 ) */
|
|
/* ( v1 v2 1 ) ( 1 v3 v3 ) */
|
|
/* ( v1 v2 v3 ) */
|
|
/* ( v1 v2 v3 ) */
|
|
|
|
/* DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': */
|
|
|
|
/* V = ( v1 v2 v3 ) V = ( v1 v1 1 ) */
|
|
/* ( v1 v2 v3 ) ( v2 v2 v2 1 ) */
|
|
/* ( 1 v2 v3 ) ( v3 v3 v3 v3 1 ) */
|
|
/* ( 1 v3 ) */
|
|
/* ( 1 ) */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
/* Quick return if possible */
|
|
|
|
/* Parameter adjustments */
|
|
v_dim1 = *ldv;
|
|
v_offset = 1 + v_dim1;
|
|
v -= v_offset;
|
|
--tau;
|
|
t_dim1 = *ldt;
|
|
t_offset = 1 + t_dim1;
|
|
t -= t_offset;
|
|
|
|
/* Function Body */
|
|
if (*n == 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (lsame_(direct, "F")) {
|
|
i__1 = *k;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
if (tau[i__] == 0.f) {
|
|
|
|
/* H(i) = I */
|
|
|
|
i__2 = i__;
|
|
for (j = 1; j <= i__2; ++j) {
|
|
t[j + i__ * t_dim1] = 0.f;
|
|
/* L10: */
|
|
}
|
|
} else {
|
|
|
|
/* general case */
|
|
|
|
vii = v[i__ + i__ * v_dim1];
|
|
v[i__ + i__ * v_dim1] = 1.f;
|
|
if (lsame_(storev, "C")) {
|
|
|
|
/* T(1:i-1,i) := - tau(i) * V(i:n,1:i-1)' * V(i:n,i) */
|
|
|
|
i__2 = *n - i__ + 1;
|
|
i__3 = i__ - 1;
|
|
r__1 = -tau[i__];
|
|
sgemv_("Transpose", &i__2, &i__3, &r__1, &v[i__ + v_dim1],
|
|
ldv, &v[i__ + i__ * v_dim1], &c__1, &c_b8, &t[
|
|
i__ * t_dim1 + 1], &c__1);
|
|
} else {
|
|
|
|
/* T(1:i-1,i) := - tau(i) * V(1:i-1,i:n) * V(i,i:n)' */
|
|
|
|
i__2 = i__ - 1;
|
|
i__3 = *n - i__ + 1;
|
|
r__1 = -tau[i__];
|
|
sgemv_("No transpose", &i__2, &i__3, &r__1, &v[i__ *
|
|
v_dim1 + 1], ldv, &v[i__ + i__ * v_dim1], ldv, &
|
|
c_b8, &t[i__ * t_dim1 + 1], &c__1);
|
|
}
|
|
v[i__ + i__ * v_dim1] = vii;
|
|
|
|
/* T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i) */
|
|
|
|
i__2 = i__ - 1;
|
|
strmv_("Upper", "No transpose", "Non-unit", &i__2, &t[
|
|
t_offset], ldt, &t[i__ * t_dim1 + 1], &c__1);
|
|
t[i__ + i__ * t_dim1] = tau[i__];
|
|
}
|
|
/* L20: */
|
|
}
|
|
} else {
|
|
for (i__ = *k; i__ >= 1; --i__) {
|
|
if (tau[i__] == 0.f) {
|
|
|
|
/* H(i) = I */
|
|
|
|
i__1 = *k;
|
|
for (j = i__; j <= i__1; ++j) {
|
|
t[j + i__ * t_dim1] = 0.f;
|
|
/* L30: */
|
|
}
|
|
} else {
|
|
|
|
/* general case */
|
|
|
|
if (i__ < *k) {
|
|
if (lsame_(storev, "C")) {
|
|
vii = v[*n - *k + i__ + i__ * v_dim1];
|
|
v[*n - *k + i__ + i__ * v_dim1] = 1.f;
|
|
|
|
/* T(i+1:k,i) := */
|
|
/* - tau(i) * V(1:n-k+i,i+1:k)' * V(1:n-k+i,i) */
|
|
|
|
i__1 = *n - *k + i__;
|
|
i__2 = *k - i__;
|
|
r__1 = -tau[i__];
|
|
sgemv_("Transpose", &i__1, &i__2, &r__1, &v[(i__ + 1)
|
|
* v_dim1 + 1], ldv, &v[i__ * v_dim1 + 1], &
|
|
c__1, &c_b8, &t[i__ + 1 + i__ * t_dim1], &
|
|
c__1);
|
|
v[*n - *k + i__ + i__ * v_dim1] = vii;
|
|
} else {
|
|
vii = v[i__ + (*n - *k + i__) * v_dim1];
|
|
v[i__ + (*n - *k + i__) * v_dim1] = 1.f;
|
|
|
|
/* T(i+1:k,i) := */
|
|
/* - tau(i) * V(i+1:k,1:n-k+i) * V(i,1:n-k+i)' */
|
|
|
|
i__1 = *k - i__;
|
|
i__2 = *n - *k + i__;
|
|
r__1 = -tau[i__];
|
|
sgemv_("No transpose", &i__1, &i__2, &r__1, &v[i__ +
|
|
1 + v_dim1], ldv, &v[i__ + v_dim1], ldv, &
|
|
c_b8, &t[i__ + 1 + i__ * t_dim1], &c__1);
|
|
v[i__ + (*n - *k + i__) * v_dim1] = vii;
|
|
}
|
|
|
|
/* T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i) */
|
|
|
|
i__1 = *k - i__;
|
|
strmv_("Lower", "No transpose", "Non-unit", &i__1, &t[i__
|
|
+ 1 + (i__ + 1) * t_dim1], ldt, &t[i__ + 1 + i__ *
|
|
t_dim1], &c__1)
|
|
;
|
|
}
|
|
t[i__ + i__ * t_dim1] = tau[i__];
|
|
}
|
|
/* L40: */
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
/* End of SLARFT */
|
|
|
|
} /* slarft_ */
|