mirror of
https://github.com/opencv/opencv.git
synced 2025-01-10 05:54:08 +08:00
322 lines
12 KiB
C++
322 lines
12 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
|
|
#include "test_precomp.hpp"
|
|
#include "test_aruco_utils.hpp"
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
enum class ArucoAlgParams
|
|
{
|
|
USE_DEFAULT = 0,
|
|
USE_ARUCO3 = 1
|
|
};
|
|
|
|
/**
|
|
* @brief Check pose estimation of aruco board
|
|
*/
|
|
class CV_ArucoBoardPose : public cvtest::BaseTest {
|
|
public:
|
|
CV_ArucoBoardPose(ArucoAlgParams arucoAlgParams)
|
|
{
|
|
aruco::DetectorParameters params;
|
|
aruco::Dictionary dictionary = aruco::getPredefinedDictionary(aruco::DICT_6X6_250);
|
|
params.minDistanceToBorder = 3;
|
|
if (arucoAlgParams == ArucoAlgParams::USE_ARUCO3) {
|
|
params.useAruco3Detection = true;
|
|
params.cornerRefinementMethod = (int)aruco::CORNER_REFINE_SUBPIX;
|
|
params.minSideLengthCanonicalImg = 16;
|
|
params.errorCorrectionRate = 0.8;
|
|
}
|
|
detector = aruco::ArucoDetector(dictionary, params);
|
|
}
|
|
|
|
protected:
|
|
aruco::ArucoDetector detector;
|
|
void run(int);
|
|
};
|
|
|
|
|
|
void CV_ArucoBoardPose::run(int) {
|
|
int iter = 0;
|
|
Mat cameraMatrix = Mat::eye(3, 3, CV_64FC1);
|
|
Size imgSize(500, 500);
|
|
cameraMatrix.at< double >(0, 0) = cameraMatrix.at< double >(1, 1) = 650;
|
|
cameraMatrix.at< double >(0, 2) = imgSize.width / 2;
|
|
cameraMatrix.at< double >(1, 2) = imgSize.height / 2;
|
|
Mat distCoeffs(5, 1, CV_64FC1, Scalar::all(0));
|
|
const int sizeX = 3, sizeY = 3;
|
|
aruco::DetectorParameters detectorParameters = detector.getDetectorParameters();
|
|
|
|
// for different perspectives
|
|
for(double distance : {0.2, 0.35}) {
|
|
for(int yaw = -55; yaw <= 50; yaw += 25) {
|
|
for(int pitch = -55; pitch <= 50; pitch += 25) {
|
|
vector<int> tmpIds;
|
|
for(int i = 0; i < sizeX*sizeY; i++)
|
|
tmpIds.push_back((iter + int(i)) % 250);
|
|
aruco::GridBoard gridboard(Size(sizeX, sizeY), 0.02f, 0.005f, detector.getDictionary(), tmpIds);
|
|
int markerBorder = iter % 2 + 1;
|
|
iter++;
|
|
// create synthetic image
|
|
Mat img = projectBoard(gridboard, cameraMatrix, deg2rad(yaw), deg2rad(pitch), distance,
|
|
imgSize, markerBorder);
|
|
vector<vector<Point2f> > corners;
|
|
vector<int> ids;
|
|
detectorParameters.markerBorderBits = markerBorder;
|
|
detector.setDetectorParameters(detectorParameters);
|
|
detector.detectMarkers(img, corners, ids);
|
|
|
|
ASSERT_EQ(ids.size(), gridboard.getIds().size());
|
|
|
|
// estimate pose
|
|
Mat rvec, tvec;
|
|
{
|
|
Mat objPoints, imgPoints; // get object and image points for the solvePnP function
|
|
gridboard.matchImagePoints(corners, ids, objPoints, imgPoints);
|
|
solvePnP(objPoints, imgPoints, cameraMatrix, distCoeffs, rvec, tvec);
|
|
}
|
|
|
|
// check axes
|
|
vector<Point2f> axes = getAxis(cameraMatrix, distCoeffs, rvec, tvec, gridboard.getRightBottomCorner().x);
|
|
vector<Point2f> topLeft = getMarkerById(gridboard.getIds()[0], corners, ids);
|
|
ASSERT_NEAR(topLeft[0].x, axes[0].x, 2.f);
|
|
ASSERT_NEAR(topLeft[0].y, axes[0].y, 2.f);
|
|
vector<Point2f> topRight = getMarkerById(gridboard.getIds()[2], corners, ids);
|
|
ASSERT_NEAR(topRight[1].x, axes[1].x, 2.f);
|
|
ASSERT_NEAR(topRight[1].y, axes[1].y, 2.f);
|
|
vector<Point2f> bottomLeft = getMarkerById(gridboard.getIds()[6], corners, ids);
|
|
ASSERT_NEAR(bottomLeft[3].x, axes[2].x, 2.f);
|
|
ASSERT_NEAR(bottomLeft[3].y, axes[2].y, 2.f);
|
|
|
|
// check estimate result
|
|
for(unsigned int i = 0; i < ids.size(); i++) {
|
|
int foundIdx = -1;
|
|
for(unsigned int j = 0; j < gridboard.getIds().size(); j++) {
|
|
if(gridboard.getIds()[j] == ids[i]) {
|
|
foundIdx = int(j);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if(foundIdx == -1) {
|
|
ts->printf(cvtest::TS::LOG, "Marker detected with wrong ID in Board test");
|
|
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
|
|
return;
|
|
}
|
|
|
|
vector< Point2f > projectedCorners;
|
|
projectPoints(gridboard.getObjPoints()[foundIdx], rvec, tvec, cameraMatrix, distCoeffs,
|
|
projectedCorners);
|
|
|
|
for(int c = 0; c < 4; c++) {
|
|
double repError = cv::norm(projectedCorners[c] - corners[i][c]); // TODO cvtest
|
|
if(repError > 5.) {
|
|
ts->printf(cvtest::TS::LOG, "Corner reprojection error too high");
|
|
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* @brief Check refine strategy
|
|
*/
|
|
class CV_ArucoRefine : public cvtest::BaseTest {
|
|
public:
|
|
CV_ArucoRefine(ArucoAlgParams arucoAlgParams)
|
|
{
|
|
aruco::Dictionary dictionary = aruco::getPredefinedDictionary(aruco::DICT_6X6_250);
|
|
aruco::DetectorParameters params;
|
|
params.minDistanceToBorder = 3;
|
|
params.cornerRefinementMethod = (int)aruco::CORNER_REFINE_SUBPIX;
|
|
if (arucoAlgParams == ArucoAlgParams::USE_ARUCO3)
|
|
params.useAruco3Detection = true;
|
|
aruco::RefineParameters refineParams(10.f, 3.f, true);
|
|
detector = aruco::ArucoDetector(dictionary, params, refineParams);
|
|
}
|
|
|
|
protected:
|
|
aruco::ArucoDetector detector;
|
|
void run(int);
|
|
};
|
|
|
|
|
|
void CV_ArucoRefine::run(int) {
|
|
|
|
int iter = 0;
|
|
Mat cameraMatrix = Mat::eye(3, 3, CV_64FC1);
|
|
Size imgSize(500, 500);
|
|
cameraMatrix.at< double >(0, 0) = cameraMatrix.at< double >(1, 1) = 650;
|
|
cameraMatrix.at< double >(0, 2) = imgSize.width / 2;
|
|
cameraMatrix.at< double >(1, 2) = imgSize.height / 2;
|
|
Mat distCoeffs(5, 1, CV_64FC1, Scalar::all(0));
|
|
aruco::DetectorParameters detectorParameters = detector.getDetectorParameters();
|
|
|
|
// for different perspectives
|
|
for(double distance : {0.2, 0.4}) {
|
|
for(int yaw = -60; yaw < 60; yaw += 30) {
|
|
for(int pitch = -60; pitch <= 60; pitch += 30) {
|
|
aruco::GridBoard gridboard(Size(3, 3), 0.02f, 0.005f, detector.getDictionary());
|
|
int markerBorder = iter % 2 + 1;
|
|
iter++;
|
|
|
|
// create synthetic image
|
|
Mat img = projectBoard(gridboard, cameraMatrix, deg2rad(yaw), deg2rad(pitch), distance,
|
|
imgSize, markerBorder);
|
|
// detect markers
|
|
vector<vector<Point2f> > corners, rejected;
|
|
vector<int> ids;
|
|
detectorParameters.markerBorderBits = markerBorder;
|
|
detector.setDetectorParameters(detectorParameters);
|
|
detector.detectMarkers(img, corners, ids, rejected);
|
|
|
|
// remove a marker from detection
|
|
int markersBeforeDelete = (int)ids.size();
|
|
if(markersBeforeDelete < 2) continue;
|
|
|
|
rejected.push_back(corners[0]);
|
|
corners.erase(corners.begin(), corners.begin() + 1);
|
|
ids.erase(ids.begin(), ids.begin() + 1);
|
|
|
|
// try to refind the erased marker
|
|
detector.refineDetectedMarkers(img, gridboard, corners, ids, rejected, cameraMatrix,
|
|
distCoeffs, noArray());
|
|
|
|
// check result
|
|
if((int)ids.size() < markersBeforeDelete) {
|
|
ts->printf(cvtest::TS::LOG, "Error in refine detected markers");
|
|
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(CV_ArucoBoardPose, accuracy) {
|
|
CV_ArucoBoardPose test(ArucoAlgParams::USE_DEFAULT);
|
|
test.safe_run();
|
|
}
|
|
|
|
typedef CV_ArucoBoardPose CV_Aruco3BoardPose;
|
|
TEST(CV_Aruco3BoardPose, accuracy) {
|
|
CV_Aruco3BoardPose test(ArucoAlgParams::USE_ARUCO3);
|
|
test.safe_run();
|
|
}
|
|
|
|
typedef CV_ArucoRefine CV_Aruco3Refine;
|
|
|
|
TEST(CV_ArucoRefine, accuracy) {
|
|
CV_ArucoRefine test(ArucoAlgParams::USE_DEFAULT);
|
|
test.safe_run();
|
|
}
|
|
|
|
TEST(CV_Aruco3Refine, accuracy) {
|
|
CV_Aruco3Refine test(ArucoAlgParams::USE_ARUCO3);
|
|
test.safe_run();
|
|
}
|
|
|
|
TEST(CV_ArucoBoardPose, CheckNegativeZ)
|
|
{
|
|
double matrixData[9] = { -3.9062571886921410e+02, 0., 4.2350000000000000e+02,
|
|
0., 3.9062571886921410e+02, 2.3950000000000000e+02,
|
|
0., 0., 1 };
|
|
cv::Mat cameraMatrix = cv::Mat(3, 3, CV_64F, matrixData);
|
|
|
|
vector<cv::Point3f> pts3d1, pts3d2;
|
|
pts3d1.push_back(cv::Point3f(0.326198f, -0.030621f, 0.303620f));
|
|
pts3d1.push_back(cv::Point3f(0.325340f, -0.100594f, 0.301862f));
|
|
pts3d1.push_back(cv::Point3f(0.255859f, -0.099530f, 0.293416f));
|
|
pts3d1.push_back(cv::Point3f(0.256717f, -0.029557f, 0.295174f));
|
|
|
|
pts3d2.push_back(cv::Point3f(-0.033144f, -0.034819f, 0.245216f));
|
|
pts3d2.push_back(cv::Point3f(-0.035507f, -0.104705f, 0.241987f));
|
|
pts3d2.push_back(cv::Point3f(-0.105289f, -0.102120f, 0.237120f));
|
|
pts3d2.push_back(cv::Point3f(-0.102926f, -0.032235f, 0.240349f));
|
|
|
|
vector<int> tmpIds = {0, 1};
|
|
vector<vector<Point3f> > tmpObjectPoints = {pts3d1, pts3d2};
|
|
aruco::Board board(tmpObjectPoints, aruco::getPredefinedDictionary(0), tmpIds);
|
|
|
|
vector<vector<Point2f> > corners;
|
|
vector<Point2f> pts2d;
|
|
pts2d.push_back(cv::Point2f(37.7f, 203.3f));
|
|
pts2d.push_back(cv::Point2f(38.5f, 120.5f));
|
|
pts2d.push_back(cv::Point2f(105.5f, 115.8f));
|
|
pts2d.push_back(cv::Point2f(104.2f, 202.7f));
|
|
corners.push_back(pts2d);
|
|
pts2d.clear();
|
|
pts2d.push_back(cv::Point2f(476.0f, 184.2f));
|
|
pts2d.push_back(cv::Point2f(479.6f, 73.8f));
|
|
pts2d.push_back(cv::Point2f(590.9f, 77.0f));
|
|
pts2d.push_back(cv::Point2f(587.5f, 188.1f));
|
|
corners.push_back(pts2d);
|
|
|
|
Vec3d rvec, tvec;
|
|
int nUsed = 0;
|
|
{
|
|
Mat objPoints, imgPoints; // get object and image points for the solvePnP function
|
|
board.matchImagePoints(corners, board.getIds(), objPoints, imgPoints);
|
|
nUsed = (int)objPoints.total()/4;
|
|
solvePnP(objPoints, imgPoints, cameraMatrix, Mat(), rvec, tvec);
|
|
}
|
|
ASSERT_EQ(nUsed, 2);
|
|
|
|
cv::Matx33d rotm; cv::Point3d out;
|
|
cv::Rodrigues(rvec, rotm);
|
|
out = cv::Point3d(tvec) + rotm*Point3d(board.getObjPoints()[0][0]);
|
|
ASSERT_GT(out.z, 0);
|
|
|
|
corners.clear(); pts2d.clear();
|
|
pts2d.push_back(cv::Point2f(38.4f, 204.5f));
|
|
pts2d.push_back(cv::Point2f(40.0f, 124.7f));
|
|
pts2d.push_back(cv::Point2f(102.0f, 119.1f));
|
|
pts2d.push_back(cv::Point2f(99.9f, 203.6f));
|
|
corners.push_back(pts2d);
|
|
pts2d.clear();
|
|
pts2d.push_back(cv::Point2f(476.0f, 184.3f));
|
|
pts2d.push_back(cv::Point2f(479.2f, 75.1f));
|
|
pts2d.push_back(cv::Point2f(588.7f, 79.2f));
|
|
pts2d.push_back(cv::Point2f(586.3f, 188.5f));
|
|
corners.push_back(pts2d);
|
|
|
|
nUsed = 0;
|
|
{
|
|
Mat objPoints, imgPoints; // get object and image points for the solvePnP function
|
|
board.matchImagePoints(corners, board.getIds(), objPoints, imgPoints);
|
|
nUsed = (int)objPoints.total()/4;
|
|
solvePnP(objPoints, imgPoints, cameraMatrix, Mat(), rvec, tvec, true);
|
|
}
|
|
ASSERT_EQ(nUsed, 2);
|
|
|
|
cv::Rodrigues(rvec, rotm);
|
|
out = cv::Point3d(tvec) + rotm*Point3d(board.getObjPoints()[0][0]);
|
|
ASSERT_GT(out.z, 0);
|
|
}
|
|
|
|
TEST(CV_ArucoGenerateBoard, regression_1226) {
|
|
int bwidth = 1600;
|
|
int bheight = 1200;
|
|
|
|
cv::aruco::Dictionary dict = cv::aruco::getPredefinedDictionary(cv::aruco::DICT_4X4_50);
|
|
cv::aruco::CharucoBoard board(Size(7, 5), 1.0, 0.75, dict);
|
|
cv::Size sz(bwidth, bheight);
|
|
cv::Mat mat;
|
|
|
|
ASSERT_NO_THROW(
|
|
{
|
|
board.generateImage(sz, mat, 0, 1);
|
|
});
|
|
}
|
|
|
|
}} // namespace
|