mirror of
https://github.com/opencv/opencv.git
synced 2024-11-29 05:29:54 +08:00
126 lines
3.3 KiB
C
126 lines
3.3 KiB
C
/* dlacpy.f -- translated by f2c (version 20061008).
|
|
You must link the resulting object file with libf2c:
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
-- in that order, at the end of the command line, as in
|
|
cc *.o -lf2c -lm
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
*/
|
|
|
|
#include "clapack.h"
|
|
|
|
|
|
/* Subroutine */ int dlacpy_(char *uplo, integer *m, integer *n, doublereal *
|
|
a, integer *lda, doublereal *b, integer *ldb)
|
|
{
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;
|
|
|
|
/* Local variables */
|
|
integer i__, j;
|
|
extern logical lsame_(char *, char *);
|
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.2) -- */
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
/* November 2006 */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* Purpose */
|
|
/* ======= */
|
|
|
|
/* DLACPY copies all or part of a two-dimensional matrix A to another */
|
|
/* matrix B. */
|
|
|
|
/* Arguments */
|
|
/* ========= */
|
|
|
|
/* UPLO (input) CHARACTER*1 */
|
|
/* Specifies the part of the matrix A to be copied to B. */
|
|
/* = 'U': Upper triangular part */
|
|
/* = 'L': Lower triangular part */
|
|
/* Otherwise: All of the matrix A */
|
|
|
|
/* M (input) INTEGER */
|
|
/* The number of rows of the matrix A. M >= 0. */
|
|
|
|
/* N (input) INTEGER */
|
|
/* The number of columns of the matrix A. N >= 0. */
|
|
|
|
/* A (input) DOUBLE PRECISION array, dimension (LDA,N) */
|
|
/* The m by n matrix A. If UPLO = 'U', only the upper triangle */
|
|
/* or trapezoid is accessed; if UPLO = 'L', only the lower */
|
|
/* triangle or trapezoid is accessed. */
|
|
|
|
/* LDA (input) INTEGER */
|
|
/* The leading dimension of the array A. LDA >= max(1,M). */
|
|
|
|
/* B (output) DOUBLE PRECISION array, dimension (LDB,N) */
|
|
/* On exit, B = A in the locations specified by UPLO. */
|
|
|
|
/* LDB (input) INTEGER */
|
|
/* The leading dimension of the array B. LDB >= max(1,M). */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
/* Parameter adjustments */
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1;
|
|
a -= a_offset;
|
|
b_dim1 = *ldb;
|
|
b_offset = 1 + b_dim1;
|
|
b -= b_offset;
|
|
|
|
/* Function Body */
|
|
if (lsame_(uplo, "U")) {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = min(j,*m);
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
b[i__ + j * b_dim1] = a[i__ + j * a_dim1];
|
|
/* L10: */
|
|
}
|
|
/* L20: */
|
|
}
|
|
} else if (lsame_(uplo, "L")) {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = *m;
|
|
for (i__ = j; i__ <= i__2; ++i__) {
|
|
b[i__ + j * b_dim1] = a[i__ + j * a_dim1];
|
|
/* L30: */
|
|
}
|
|
/* L40: */
|
|
}
|
|
} else {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = *m;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
b[i__ + j * b_dim1] = a[i__ + j * a_dim1];
|
|
/* L50: */
|
|
}
|
|
/* L60: */
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
/* End of DLACPY */
|
|
|
|
} /* dlacpy_ */
|