mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 17:44:04 +08:00
215 lines
6.4 KiB
C++
215 lines
6.4 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
#include "precomp.hpp"
|
|
|
|
#include "net_impl.hpp"
|
|
#include "legacy_backend.hpp"
|
|
|
|
namespace cv {
|
|
namespace dnn {
|
|
CV__DNN_INLINE_NS_BEGIN
|
|
|
|
|
|
Ptr<BackendWrapper> Net::Impl::wrap(Mat& host)
|
|
{
|
|
if (preferableBackend == DNN_BACKEND_OPENCV && preferableTarget == DNN_TARGET_CPU)
|
|
return Ptr<BackendWrapper>();
|
|
|
|
MatShape shape(host.dims);
|
|
for (int i = 0; i < host.dims; ++i)
|
|
shape[i] = host.size[i];
|
|
|
|
void* data = host.data;
|
|
if (backendWrappers.find(data) != backendWrappers.end())
|
|
{
|
|
Ptr<BackendWrapper> baseBuffer = backendWrappers[data];
|
|
if (preferableBackend == DNN_BACKEND_OPENCV)
|
|
{
|
|
#ifdef HAVE_OPENCL
|
|
CV_Assert(IS_DNN_OPENCL_TARGET(preferableTarget));
|
|
return OpenCLBackendWrapper::create(baseBuffer, host);
|
|
#else
|
|
CV_Error(Error::StsInternal, "");
|
|
#endif
|
|
}
|
|
else if (preferableBackend == DNN_BACKEND_HALIDE)
|
|
{
|
|
CV_Assert(haveHalide());
|
|
#ifdef HAVE_HALIDE
|
|
return Ptr<BackendWrapper>(new HalideBackendWrapper(baseBuffer, shape));
|
|
#endif
|
|
}
|
|
else if (preferableBackend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
{
|
|
CV_ERROR_DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019;
|
|
}
|
|
else if (preferableBackend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
{
|
|
return wrapMat(preferableBackend, preferableTarget, host);
|
|
}
|
|
else if (preferableBackend == DNN_BACKEND_WEBNN)
|
|
{
|
|
#ifdef HAVE_WEBNN
|
|
return wrapMat(preferableBackend, preferableTarget, host);
|
|
#endif
|
|
}
|
|
else if (preferableBackend == DNN_BACKEND_VKCOM)
|
|
{
|
|
#ifdef HAVE_VULKAN
|
|
return Ptr<BackendWrapper>(new VkComBackendWrapper(baseBuffer, host));
|
|
#endif
|
|
}
|
|
else if (preferableBackend == DNN_BACKEND_CUDA)
|
|
{
|
|
CV_Assert(haveCUDA());
|
|
#ifdef HAVE_CUDA
|
|
switch (preferableTarget)
|
|
{
|
|
case DNN_TARGET_CUDA:
|
|
return CUDABackendWrapperFP32::create(baseBuffer, shape);
|
|
case DNN_TARGET_CUDA_FP16:
|
|
return CUDABackendWrapperFP16::create(baseBuffer, shape);
|
|
default:
|
|
CV_Assert(IS_DNN_CUDA_TARGET(preferableTarget));
|
|
}
|
|
#endif
|
|
}
|
|
else if (preferableBackend == DNN_BACKEND_TIMVX)
|
|
{
|
|
#ifdef HAVE_TIMVX
|
|
return Ptr<BackendWrapper>(new TimVXBackendWrapper(baseBuffer, host));
|
|
#endif
|
|
}
|
|
else
|
|
CV_Error(Error::StsNotImplemented, "Unknown backend identifier");
|
|
}
|
|
|
|
Ptr<BackendWrapper> wrapper = wrapMat(preferableBackend, preferableTarget, host);
|
|
backendWrappers[data] = wrapper;
|
|
return wrapper;
|
|
}
|
|
|
|
|
|
void Net::Impl::initBackend(const std::vector<LayerPin>& blobsToKeep_)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
if (preferableBackend == DNN_BACKEND_OPENCV)
|
|
{
|
|
CV_Assert(preferableTarget == DNN_TARGET_CPU || IS_DNN_OPENCL_TARGET(preferableTarget));
|
|
}
|
|
else if (preferableBackend == DNN_BACKEND_HALIDE)
|
|
{
|
|
#ifdef HAVE_HALIDE
|
|
initHalideBackend();
|
|
#else
|
|
CV_Error(Error::StsNotImplemented, "This OpenCV version is built without support of Halide");
|
|
#endif
|
|
}
|
|
else if (preferableBackend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
{
|
|
CV_Assert(0 && "Inheritance must be used with OpenVINO backend");
|
|
}
|
|
else if (preferableBackend == DNN_BACKEND_WEBNN)
|
|
{
|
|
#ifdef HAVE_WEBNN
|
|
initWebnnBackend(blobsToKeep_);
|
|
#else
|
|
CV_Error(Error::StsNotImplemented, "This OpenCV version is built without support of WebNN");
|
|
#endif
|
|
}
|
|
else if (preferableBackend == DNN_BACKEND_VKCOM)
|
|
{
|
|
#ifdef HAVE_VULKAN
|
|
initVkComBackend();
|
|
#else
|
|
CV_Error(Error::StsNotImplemented, "This OpenCV version is built without support of Vulkan");
|
|
#endif
|
|
}
|
|
else if (preferableBackend == DNN_BACKEND_CUDA)
|
|
{
|
|
#ifdef HAVE_CUDA
|
|
initCUDABackend(blobsToKeep_);
|
|
#else
|
|
CV_Error(Error::StsNotImplemented, "This OpenCV version is built without support of CUDA/CUDNN");
|
|
#endif
|
|
}
|
|
else if (preferableBackend == DNN_BACKEND_TIMVX)
|
|
{
|
|
#ifdef HAVE_TIMVX
|
|
initTimVXBackend();
|
|
#else
|
|
CV_Error(Error::StsNotImplemented, "This OpenCV version is built without support of TimVX");
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
CV_Error(Error::StsNotImplemented, cv::format("Unknown backend identifier: %d", preferableBackend));
|
|
}
|
|
}
|
|
|
|
|
|
void Net::Impl::setPreferableBackend(Net& net, int backendId)
|
|
{
|
|
if (backendId == DNN_BACKEND_DEFAULT)
|
|
backendId = (Backend)getParam_DNN_BACKEND_DEFAULT();
|
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE)
|
|
backendId = DNN_BACKEND_INFERENCE_ENGINE_NGRAPH; // = getInferenceEngineBackendTypeParam();
|
|
|
|
if (netWasQuantized && backendId != DNN_BACKEND_OPENCV && backendId != DNN_BACKEND_TIMVX)
|
|
{
|
|
CV_LOG_WARNING(NULL, "DNN: Only default and TIMVX backends support quantized networks");
|
|
backendId = DNN_BACKEND_OPENCV;
|
|
}
|
|
|
|
if (preferableBackend != backendId)
|
|
{
|
|
preferableBackend = backendId;
|
|
clear();
|
|
#ifdef HAVE_INF_ENGINE
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
{
|
|
switchToOpenVINOBackend(net);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void Net::Impl::setPreferableTarget(int targetId)
|
|
{
|
|
if (netWasQuantized && targetId != DNN_TARGET_CPU &&
|
|
targetId != DNN_TARGET_OPENCL && targetId != DNN_TARGET_OPENCL_FP16 && targetId != DNN_TARGET_NPU)
|
|
{
|
|
CV_LOG_WARNING(NULL, "DNN: Only CPU, OpenCL/OpenCL FP16 and NPU targets are supported by quantized networks");
|
|
targetId = DNN_TARGET_CPU;
|
|
}
|
|
|
|
if (preferableTarget != targetId)
|
|
{
|
|
preferableTarget = targetId;
|
|
if (IS_DNN_OPENCL_TARGET(targetId))
|
|
{
|
|
#ifndef HAVE_OPENCL
|
|
#ifdef HAVE_INF_ENGINE
|
|
if (preferableBackend == DNN_BACKEND_OPENCV)
|
|
#else
|
|
if (preferableBackend == DNN_BACKEND_DEFAULT ||
|
|
preferableBackend == DNN_BACKEND_OPENCV)
|
|
#endif // HAVE_INF_ENGINE
|
|
preferableTarget = DNN_TARGET_CPU;
|
|
#else
|
|
bool fp16 = ocl::Device::getDefault().isExtensionSupported("cl_khr_fp16");
|
|
if (!fp16 && targetId == DNN_TARGET_OPENCL_FP16)
|
|
preferableTarget = DNN_TARGET_OPENCL;
|
|
#endif
|
|
}
|
|
clear();
|
|
}
|
|
}
|
|
|
|
|
|
CV__DNN_INLINE_NS_END
|
|
}} // namespace cv::dnn
|