mirror of
https://github.com/opencv/opencv.git
synced 2025-01-13 00:01:27 +08:00
313 lines
10 KiB
C++
313 lines
10 KiB
C++
/*
|
|
* stereo_match.cpp
|
|
* calibration
|
|
*
|
|
* Created by Victor Eruhimov on 1/18/10.
|
|
* Copyright 2010 Argus Corp. All rights reserved.
|
|
*
|
|
*/
|
|
|
|
#include "opencv2/calib3d/calib3d.hpp"
|
|
#include "opencv2/imgproc/imgproc.hpp"
|
|
#include "opencv2/highgui/highgui.hpp"
|
|
#include "opencv2/contrib/contrib.hpp"
|
|
|
|
#include <stdio.h>
|
|
|
|
using namespace cv;
|
|
|
|
static void print_help()
|
|
{
|
|
printf("\nDemo stereo matching converting L and R images into disparity and point clouds\n");
|
|
printf("\nUsage: stereo_match <left_image> <right_image> [--algorithm=bm|sgbm|hh|var] [--blocksize=<block_size>]\n"
|
|
"[--max-disparity=<max_disparity>] [--scale=scale_factor>] [-i <intrinsic_filename>] [-e <extrinsic_filename>]\n"
|
|
"[--no-display] [-o <disparity_image>] [-p <point_cloud_file>]\n");
|
|
}
|
|
|
|
static void saveXYZ(const char* filename, const Mat& mat)
|
|
{
|
|
const double max_z = 1.0e4;
|
|
FILE* fp = fopen(filename, "wt");
|
|
for(int y = 0; y < mat.rows; y++)
|
|
{
|
|
for(int x = 0; x < mat.cols; x++)
|
|
{
|
|
Vec3f point = mat.at<Vec3f>(y, x);
|
|
if(fabs(point[2] - max_z) < FLT_EPSILON || fabs(point[2]) > max_z) continue;
|
|
fprintf(fp, "%f %f %f\n", point[0], point[1], point[2]);
|
|
}
|
|
}
|
|
fclose(fp);
|
|
}
|
|
|
|
int main(int argc, char** argv)
|
|
{
|
|
const char* algorithm_opt = "--algorithm=";
|
|
const char* maxdisp_opt = "--max-disparity=";
|
|
const char* blocksize_opt = "--blocksize=";
|
|
const char* nodisplay_opt = "--no-display";
|
|
const char* scale_opt = "--scale=";
|
|
|
|
if(argc < 3)
|
|
{
|
|
print_help();
|
|
return 0;
|
|
}
|
|
const char* img1_filename = 0;
|
|
const char* img2_filename = 0;
|
|
const char* intrinsic_filename = 0;
|
|
const char* extrinsic_filename = 0;
|
|
const char* disparity_filename = 0;
|
|
const char* point_cloud_filename = 0;
|
|
|
|
enum { STEREO_BM=0, STEREO_SGBM=1, STEREO_HH=2, STEREO_VAR=3 };
|
|
int alg = STEREO_SGBM;
|
|
int SADWindowSize = 0, numberOfDisparities = 0;
|
|
bool no_display = false;
|
|
float scale = 1.f;
|
|
|
|
StereoBM bm;
|
|
StereoSGBM sgbm;
|
|
StereoVar var;
|
|
|
|
for( int i = 1; i < argc; i++ )
|
|
{
|
|
if( argv[i][0] != '-' )
|
|
{
|
|
if( !img1_filename )
|
|
img1_filename = argv[i];
|
|
else
|
|
img2_filename = argv[i];
|
|
}
|
|
else if( strncmp(argv[i], algorithm_opt, strlen(algorithm_opt)) == 0 )
|
|
{
|
|
char* _alg = argv[i] + strlen(algorithm_opt);
|
|
alg = strcmp(_alg, "bm") == 0 ? STEREO_BM :
|
|
strcmp(_alg, "sgbm") == 0 ? STEREO_SGBM :
|
|
strcmp(_alg, "hh") == 0 ? STEREO_HH :
|
|
strcmp(_alg, "var") == 0 ? STEREO_VAR : -1;
|
|
if( alg < 0 )
|
|
{
|
|
printf("Command-line parameter error: Unknown stereo algorithm\n\n");
|
|
print_help();
|
|
return -1;
|
|
}
|
|
}
|
|
else if( strncmp(argv[i], maxdisp_opt, strlen(maxdisp_opt)) == 0 )
|
|
{
|
|
if( sscanf( argv[i] + strlen(maxdisp_opt), "%d", &numberOfDisparities ) != 1 ||
|
|
numberOfDisparities < 1 || numberOfDisparities % 16 != 0 )
|
|
{
|
|
printf("Command-line parameter error: The max disparity (--maxdisparity=<...>) must be a positive integer divisible by 16\n");
|
|
print_help();
|
|
return -1;
|
|
}
|
|
}
|
|
else if( strncmp(argv[i], blocksize_opt, strlen(blocksize_opt)) == 0 )
|
|
{
|
|
if( sscanf( argv[i] + strlen(blocksize_opt), "%d", &SADWindowSize ) != 1 ||
|
|
SADWindowSize < 1 || SADWindowSize % 2 != 1 )
|
|
{
|
|
printf("Command-line parameter error: The block size (--blocksize=<...>) must be a positive odd number\n");
|
|
return -1;
|
|
}
|
|
}
|
|
else if( strncmp(argv[i], scale_opt, strlen(scale_opt)) == 0 )
|
|
{
|
|
if( sscanf( argv[i] + strlen(scale_opt), "%f", &scale ) != 1 || scale < 0 )
|
|
{
|
|
printf("Command-line parameter error: The scale factor (--scale=<...>) must be a positive floating-point number\n");
|
|
return -1;
|
|
}
|
|
}
|
|
else if( strcmp(argv[i], nodisplay_opt) == 0 )
|
|
no_display = true;
|
|
else if( strcmp(argv[i], "-i" ) == 0 )
|
|
intrinsic_filename = argv[++i];
|
|
else if( strcmp(argv[i], "-e" ) == 0 )
|
|
extrinsic_filename = argv[++i];
|
|
else if( strcmp(argv[i], "-o" ) == 0 )
|
|
disparity_filename = argv[++i];
|
|
else if( strcmp(argv[i], "-p" ) == 0 )
|
|
point_cloud_filename = argv[++i];
|
|
else
|
|
{
|
|
printf("Command-line parameter error: unknown option %s\n", argv[i]);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if( !img1_filename || !img2_filename )
|
|
{
|
|
printf("Command-line parameter error: both left and right images must be specified\n");
|
|
return -1;
|
|
}
|
|
|
|
if( (intrinsic_filename != 0) ^ (extrinsic_filename != 0) )
|
|
{
|
|
printf("Command-line parameter error: either both intrinsic and extrinsic parameters must be specified, or none of them (when the stereo pair is already rectified)\n");
|
|
return -1;
|
|
}
|
|
|
|
if( extrinsic_filename == 0 && point_cloud_filename )
|
|
{
|
|
printf("Command-line parameter error: extrinsic and intrinsic parameters must be specified to compute the point cloud\n");
|
|
return -1;
|
|
}
|
|
|
|
int color_mode = alg == STEREO_BM ? 0 : -1;
|
|
Mat img1 = imread(img1_filename, color_mode);
|
|
Mat img2 = imread(img2_filename, color_mode);
|
|
|
|
if( scale != 1.f )
|
|
{
|
|
Mat temp1, temp2;
|
|
int method = scale < 1 ? INTER_AREA : INTER_CUBIC;
|
|
resize(img1, temp1, Size(), scale, scale, method);
|
|
img1 = temp1;
|
|
resize(img2, temp2, Size(), scale, scale, method);
|
|
img2 = temp2;
|
|
}
|
|
|
|
Size img_size = img1.size();
|
|
|
|
Rect roi1, roi2;
|
|
Mat Q;
|
|
|
|
if( intrinsic_filename )
|
|
{
|
|
// reading intrinsic parameters
|
|
FileStorage fs(intrinsic_filename, CV_STORAGE_READ);
|
|
if(!fs.isOpened())
|
|
{
|
|
printf("Failed to open file %s\n", intrinsic_filename);
|
|
return -1;
|
|
}
|
|
|
|
Mat M1, D1, M2, D2;
|
|
fs["M1"] >> M1;
|
|
fs["D1"] >> D1;
|
|
fs["M2"] >> M2;
|
|
fs["D2"] >> D2;
|
|
|
|
M1 *= scale;
|
|
M2 *= scale;
|
|
|
|
fs.open(extrinsic_filename, CV_STORAGE_READ);
|
|
if(!fs.isOpened())
|
|
{
|
|
printf("Failed to open file %s\n", extrinsic_filename);
|
|
return -1;
|
|
}
|
|
|
|
Mat R, T, R1, P1, R2, P2;
|
|
fs["R"] >> R;
|
|
fs["T"] >> T;
|
|
|
|
stereoRectify( M1, D1, M2, D2, img_size, R, T, R1, R2, P1, P2, Q, CALIB_ZERO_DISPARITY, -1, img_size, &roi1, &roi2 );
|
|
|
|
Mat map11, map12, map21, map22;
|
|
initUndistortRectifyMap(M1, D1, R1, P1, img_size, CV_16SC2, map11, map12);
|
|
initUndistortRectifyMap(M2, D2, R2, P2, img_size, CV_16SC2, map21, map22);
|
|
|
|
Mat img1r, img2r;
|
|
remap(img1, img1r, map11, map12, INTER_LINEAR);
|
|
remap(img2, img2r, map21, map22, INTER_LINEAR);
|
|
|
|
img1 = img1r;
|
|
img2 = img2r;
|
|
}
|
|
|
|
numberOfDisparities = numberOfDisparities > 0 ? numberOfDisparities : ((img_size.width/8) + 15) & -16;
|
|
|
|
bm.state->roi1 = roi1;
|
|
bm.state->roi2 = roi2;
|
|
bm.state->preFilterCap = 31;
|
|
bm.state->SADWindowSize = SADWindowSize > 0 ? SADWindowSize : 9;
|
|
bm.state->minDisparity = 0;
|
|
bm.state->numberOfDisparities = numberOfDisparities;
|
|
bm.state->textureThreshold = 10;
|
|
bm.state->uniquenessRatio = 15;
|
|
bm.state->speckleWindowSize = 100;
|
|
bm.state->speckleRange = 32;
|
|
bm.state->disp12MaxDiff = 1;
|
|
|
|
sgbm.preFilterCap = 63;
|
|
sgbm.SADWindowSize = SADWindowSize > 0 ? SADWindowSize : 3;
|
|
|
|
int cn = img1.channels();
|
|
|
|
sgbm.P1 = 8*cn*sgbm.SADWindowSize*sgbm.SADWindowSize;
|
|
sgbm.P2 = 32*cn*sgbm.SADWindowSize*sgbm.SADWindowSize;
|
|
sgbm.minDisparity = 0;
|
|
sgbm.numberOfDisparities = numberOfDisparities;
|
|
sgbm.uniquenessRatio = 10;
|
|
sgbm.speckleWindowSize = bm.state->speckleWindowSize;
|
|
sgbm.speckleRange = bm.state->speckleRange;
|
|
sgbm.disp12MaxDiff = 1;
|
|
sgbm.fullDP = alg == STEREO_HH;
|
|
|
|
var.levels = 3; // ignored with USE_AUTO_PARAMS
|
|
var.pyrScale = 0.5; // ignored with USE_AUTO_PARAMS
|
|
var.nIt = 25;
|
|
var.minDisp = -numberOfDisparities;
|
|
var.maxDisp = 0;
|
|
var.poly_n = 3;
|
|
var.poly_sigma = 0.0;
|
|
var.fi = 15.0f;
|
|
var.lambda = 0.03f;
|
|
var.penalization = var.PENALIZATION_TICHONOV; // ignored with USE_AUTO_PARAMS
|
|
var.cycle = var.CYCLE_V; // ignored with USE_AUTO_PARAMS
|
|
var.flags = var.USE_SMART_ID | var.USE_AUTO_PARAMS | var.USE_INITIAL_DISPARITY | var.USE_MEDIAN_FILTERING ;
|
|
|
|
Mat disp, disp8;
|
|
//Mat img1p, img2p, dispp;
|
|
//copyMakeBorder(img1, img1p, 0, 0, numberOfDisparities, 0, IPL_BORDER_REPLICATE);
|
|
//copyMakeBorder(img2, img2p, 0, 0, numberOfDisparities, 0, IPL_BORDER_REPLICATE);
|
|
|
|
int64 t = getTickCount();
|
|
if( alg == STEREO_BM )
|
|
bm(img1, img2, disp);
|
|
else if( alg == STEREO_VAR ) {
|
|
var(img1, img2, disp);
|
|
}
|
|
else if( alg == STEREO_SGBM || alg == STEREO_HH )
|
|
sgbm(img1, img2, disp);
|
|
t = getTickCount() - t;
|
|
printf("Time elapsed: %fms\n", t*1000/getTickFrequency());
|
|
|
|
//disp = dispp.colRange(numberOfDisparities, img1p.cols);
|
|
if( alg != STEREO_VAR )
|
|
disp.convertTo(disp8, CV_8U, 255/(numberOfDisparities*16.));
|
|
else
|
|
disp.convertTo(disp8, CV_8U);
|
|
if( !no_display )
|
|
{
|
|
namedWindow("left", 1);
|
|
imshow("left", img1);
|
|
namedWindow("right", 1);
|
|
imshow("right", img2);
|
|
namedWindow("disparity", 0);
|
|
imshow("disparity", disp8);
|
|
printf("press any key to continue...");
|
|
fflush(stdout);
|
|
waitKey();
|
|
printf("\n");
|
|
}
|
|
|
|
if(disparity_filename)
|
|
imwrite(disparity_filename, disp8);
|
|
|
|
if(point_cloud_filename)
|
|
{
|
|
printf("storing the point cloud...");
|
|
fflush(stdout);
|
|
Mat xyz;
|
|
reprojectImageTo3D(disp, xyz, Q, true);
|
|
saveXYZ(point_cloud_filename, xyz);
|
|
printf("\n");
|
|
}
|
|
|
|
return 0;
|
|
}
|