opencv/modules/calib3d/include/opencv2/calib3d/calib3d.hpp

753 lines
36 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_CALIB3D_HPP__
#define __OPENCV_CALIB3D_HPP__
#include "opencv2/core/core.hpp"
#ifdef __cplusplus
extern "C" {
#endif
/****************************************************************************************\
* Camera Calibration, Pose Estimation and Stereo *
\****************************************************************************************/
typedef struct CvPOSITObject CvPOSITObject;
/* Allocates and initializes CvPOSITObject structure before doing cvPOSIT */
CVAPI(CvPOSITObject*) cvCreatePOSITObject( CvPoint3D32f* points, int point_count );
/* Runs POSIT (POSe from ITeration) algorithm for determining 3d position of
an object given its model and projection in a weak-perspective case */
CVAPI(void) cvPOSIT( CvPOSITObject* posit_object, CvPoint2D32f* image_points,
double focal_length, CvTermCriteria criteria,
float* rotation_matrix, float* translation_vector);
/* Releases CvPOSITObject structure */
CVAPI(void) cvReleasePOSITObject( CvPOSITObject** posit_object );
/* updates the number of RANSAC iterations */
CVAPI(int) cvRANSACUpdateNumIters( double p, double err_prob,
int model_points, int max_iters );
CVAPI(void) cvConvertPointsHomogeneous( const CvMat* src, CvMat* dst );
/* Calculates fundamental matrix given a set of corresponding points */
#define CV_FM_7POINT 1
#define CV_FM_8POINT 2
#define CV_FM_LMEDS_ONLY 8
#define CV_FM_RANSAC_ONLY 4
#define CV_FM_LMEDS 8
#define CV_FM_RANSAC 4
CVAPI(int) cvFindFundamentalMat( const CvMat* points1, const CvMat* points2,
CvMat* fundamental_matrix,
int method CV_DEFAULT(CV_FM_RANSAC),
double param1 CV_DEFAULT(3.), double param2 CV_DEFAULT(0.99),
CvMat* status CV_DEFAULT(NULL) );
/* For each input point on one of images
computes parameters of the corresponding
epipolar line on the other image */
CVAPI(void) cvComputeCorrespondEpilines( const CvMat* points,
int which_image,
const CvMat* fundamental_matrix,
CvMat* correspondent_lines );
/* Triangulation functions */
CVAPI(void) cvTriangulatePoints(CvMat* projMatr1, CvMat* projMatr2,
CvMat* projPoints1, CvMat* projPoints2,
CvMat* points4D);
CVAPI(void) cvCorrectMatches(CvMat* F, CvMat* points1, CvMat* points2,
CvMat* new_points1, CvMat* new_points2);
/* Computes the optimal new camera matrix according to the free scaling parameter alpha:
alpha=0 - only valid pixels will be retained in the undistorted image
alpha=1 - all the source image pixels will be retained in the undistorted image
*/
CVAPI(void) cvGetOptimalNewCameraMatrix( const CvMat* camera_matrix,
const CvMat* dist_coeffs,
CvSize image_size, double alpha,
CvMat* new_camera_matrix,
CvSize new_imag_size CV_DEFAULT(cvSize(0,0)),
CvRect* valid_pixel_ROI CV_DEFAULT(0) );
/* Converts rotation vector to rotation matrix or vice versa */
CVAPI(int) cvRodrigues2( const CvMat* src, CvMat* dst,
CvMat* jacobian CV_DEFAULT(0) );
#define CV_LMEDS 4
#define CV_RANSAC 8
/* Finds perspective transformation between the object plane and image (view) plane */
CVAPI(int) cvFindHomography( const CvMat* src_points,
const CvMat* dst_points,
CvMat* homography,
int method CV_DEFAULT(0),
double ransacReprojThreshold CV_DEFAULT(3),
CvMat* mask CV_DEFAULT(0));
/* Computes RQ decomposition for 3x3 matrices */
CVAPI(void) cvRQDecomp3x3( const CvMat *matrixM, CvMat *matrixR, CvMat *matrixQ,
CvMat *matrixQx CV_DEFAULT(NULL),
CvMat *matrixQy CV_DEFAULT(NULL),
CvMat *matrixQz CV_DEFAULT(NULL),
CvPoint3D64f *eulerAngles CV_DEFAULT(NULL));
/* Computes projection matrix decomposition */
CVAPI(void) cvDecomposeProjectionMatrix( const CvMat *projMatr, CvMat *calibMatr,
CvMat *rotMatr, CvMat *posVect,
CvMat *rotMatrX CV_DEFAULT(NULL),
CvMat *rotMatrY CV_DEFAULT(NULL),
CvMat *rotMatrZ CV_DEFAULT(NULL),
CvPoint3D64f *eulerAngles CV_DEFAULT(NULL));
/* Computes d(AB)/dA and d(AB)/dB */
CVAPI(void) cvCalcMatMulDeriv( const CvMat* A, const CvMat* B, CvMat* dABdA, CvMat* dABdB );
/* Computes r3 = rodrigues(rodrigues(r2)*rodrigues(r1)),
t3 = rodrigues(r2)*t1 + t2 and the respective derivatives */
CVAPI(void) cvComposeRT( const CvMat* _rvec1, const CvMat* _tvec1,
const CvMat* _rvec2, const CvMat* _tvec2,
CvMat* _rvec3, CvMat* _tvec3,
CvMat* dr3dr1 CV_DEFAULT(0), CvMat* dr3dt1 CV_DEFAULT(0),
CvMat* dr3dr2 CV_DEFAULT(0), CvMat* dr3dt2 CV_DEFAULT(0),
CvMat* dt3dr1 CV_DEFAULT(0), CvMat* dt3dt1 CV_DEFAULT(0),
CvMat* dt3dr2 CV_DEFAULT(0), CvMat* dt3dt2 CV_DEFAULT(0) );
/* Projects object points to the view plane using
the specified extrinsic and intrinsic camera parameters */
CVAPI(void) cvProjectPoints2( const CvMat* object_points, const CvMat* rotation_vector,
const CvMat* translation_vector, const CvMat* camera_matrix,
const CvMat* distortion_coeffs, CvMat* image_points,
CvMat* dpdrot CV_DEFAULT(NULL), CvMat* dpdt CV_DEFAULT(NULL),
CvMat* dpdf CV_DEFAULT(NULL), CvMat* dpdc CV_DEFAULT(NULL),
CvMat* dpddist CV_DEFAULT(NULL),
double aspect_ratio CV_DEFAULT(0));
/* Finds extrinsic camera parameters from
a few known corresponding point pairs and intrinsic parameters */
CVAPI(void) cvFindExtrinsicCameraParams2( const CvMat* object_points,
const CvMat* image_points,
const CvMat* camera_matrix,
const CvMat* distortion_coeffs,
CvMat* rotation_vector,
CvMat* translation_vector,
int use_extrinsic_guess CV_DEFAULT(0) );
/* Computes initial estimate of the intrinsic camera parameters
in case of planar calibration target (e.g. chessboard) */
CVAPI(void) cvInitIntrinsicParams2D( const CvMat* object_points,
const CvMat* image_points,
const CvMat* npoints, CvSize image_size,
CvMat* camera_matrix,
double aspect_ratio CV_DEFAULT(1.) );
#define CV_CALIB_CB_ADAPTIVE_THRESH 1
#define CV_CALIB_CB_NORMALIZE_IMAGE 2
#define CV_CALIB_CB_FILTER_QUADS 4
#define CV_CALIB_CB_FAST_CHECK 8
// Performs a fast check if a chessboard is in the input image. This is a workaround to
// a problem of cvFindChessboardCorners being slow on images with no chessboard
// - src: input image
// - size: chessboard size
// Returns 1 if a chessboard can be in this image and findChessboardCorners should be called,
// 0 if there is no chessboard, -1 in case of error
CVAPI(int) cvCheckChessboard(IplImage* src, CvSize size);
/* Detects corners on a chessboard calibration pattern */
CVAPI(int) cvFindChessboardCorners( const void* image, CvSize pattern_size,
CvPoint2D32f* corners,
int* corner_count CV_DEFAULT(NULL),
int flags CV_DEFAULT(CV_CALIB_CB_ADAPTIVE_THRESH+
CV_CALIB_CB_NORMALIZE_IMAGE) );
/* Draws individual chessboard corners or the whole chessboard detected */
CVAPI(void) cvDrawChessboardCorners( CvArr* image, CvSize pattern_size,
CvPoint2D32f* corners,
int count, int pattern_was_found );
#define CV_CALIB_USE_INTRINSIC_GUESS 1
#define CV_CALIB_FIX_ASPECT_RATIO 2
#define CV_CALIB_FIX_PRINCIPAL_POINT 4
#define CV_CALIB_ZERO_TANGENT_DIST 8
#define CV_CALIB_FIX_FOCAL_LENGTH 16
#define CV_CALIB_FIX_K1 32
#define CV_CALIB_FIX_K2 64
#define CV_CALIB_FIX_K3 128
#define CV_CALIB_FIX_K4 2048
#define CV_CALIB_FIX_K5 4096
#define CV_CALIB_FIX_K6 8192
/* Finds intrinsic and extrinsic camera parameters
from a few views of known calibration pattern */
CVAPI(double) cvCalibrateCamera2( const CvMat* object_points,
const CvMat* image_points,
const CvMat* point_counts,
CvSize image_size,
CvMat* camera_matrix,
CvMat* distortion_coeffs,
CvMat* rotation_vectors CV_DEFAULT(NULL),
CvMat* translation_vectors CV_DEFAULT(NULL),
int flags CV_DEFAULT(0) );
/* Computes various useful characteristics of the camera from the data computed by
cvCalibrateCamera2 */
CVAPI(void) cvCalibrationMatrixValues( const CvMat *camera_matrix,
CvSize image_size,
double aperture_width CV_DEFAULT(0),
double aperture_height CV_DEFAULT(0),
double *fovx CV_DEFAULT(NULL),
double *fovy CV_DEFAULT(NULL),
double *focal_length CV_DEFAULT(NULL),
CvPoint2D64f *principal_point CV_DEFAULT(NULL),
double *pixel_aspect_ratio CV_DEFAULT(NULL));
#define CV_CALIB_FIX_INTRINSIC 256
#define CV_CALIB_SAME_FOCAL_LENGTH 512
/* Computes the transformation from one camera coordinate system to another one
from a few correspondent views of the same calibration target. Optionally, calibrates
both cameras */
CVAPI(double) cvStereoCalibrate( const CvMat* object_points, const CvMat* image_points1,
const CvMat* image_points2, const CvMat* npoints,
CvMat* camera_matrix1, CvMat* dist_coeffs1,
CvMat* camera_matrix2, CvMat* dist_coeffs2,
CvSize image_size, CvMat* R, CvMat* T,
CvMat* E CV_DEFAULT(0), CvMat* F CV_DEFAULT(0),
CvTermCriteria term_crit CV_DEFAULT(cvTermCriteria(
CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,30,1e-6)),
int flags CV_DEFAULT(CV_CALIB_FIX_INTRINSIC));
#define CV_CALIB_ZERO_DISPARITY 1024
/* Computes 3D rotations (+ optional shift) for each camera coordinate system to make both
views parallel (=> to make all the epipolar lines horizontal or vertical) */
CVAPI(void) cvStereoRectify( const CvMat* camera_matrix1, const CvMat* camera_matrix2,
const CvMat* dist_coeffs1, const CvMat* dist_coeffs2,
CvSize image_size, const CvMat* R, const CvMat* T,
CvMat* R1, CvMat* R2, CvMat* P1, CvMat* P2,
CvMat* Q CV_DEFAULT(0),
int flags CV_DEFAULT(CV_CALIB_ZERO_DISPARITY),
double alpha CV_DEFAULT(-1),
CvSize new_image_size CV_DEFAULT(cvSize(0,0)),
CvRect* valid_pix_ROI1 CV_DEFAULT(0),
CvRect* valid_pix_ROI2 CV_DEFAULT(0));
/* Computes rectification transformations for uncalibrated pair of images using a set
of point correspondences */
CVAPI(int) cvStereoRectifyUncalibrated( const CvMat* points1, const CvMat* points2,
const CvMat* F, CvSize img_size,
CvMat* H1, CvMat* H2,
double threshold CV_DEFAULT(5));
/* stereo correspondence parameters and functions */
#define CV_STEREO_BM_NORMALIZED_RESPONSE 0
#define CV_STEREO_BM_XSOBEL 1
/* Block matching algorithm structure */
typedef struct CvStereoBMState
{
// pre-filtering (normalization of input images)
int preFilterType; // =CV_STEREO_BM_NORMALIZED_RESPONSE now
int preFilterSize; // averaging window size: ~5x5..21x21
int preFilterCap; // the output of pre-filtering is clipped by [-preFilterCap,preFilterCap]
// correspondence using Sum of Absolute Difference (SAD)
int SADWindowSize; // ~5x5..21x21
int minDisparity; // minimum disparity (can be negative)
int numberOfDisparities; // maximum disparity - minimum disparity (> 0)
// post-filtering
int textureThreshold; // the disparity is only computed for pixels
// with textured enough neighborhood
int uniquenessRatio; // accept the computed disparity d* only if
// SAD(d) >= SAD(d*)*(1 + uniquenessRatio/100.)
// for any d != d*+/-1 within the search range.
int speckleWindowSize; // disparity variation window
int speckleRange; // acceptable range of variation in window
int trySmallerWindows; // if 1, the results may be more accurate,
// at the expense of slower processing
CvRect roi1, roi2;
int disp12MaxDiff;
// temporary buffers
CvMat* preFilteredImg0;
CvMat* preFilteredImg1;
CvMat* slidingSumBuf;
CvMat* cost;
CvMat* disp;
} CvStereoBMState;
#define CV_STEREO_BM_BASIC 0
#define CV_STEREO_BM_FISH_EYE 1
#define CV_STEREO_BM_NARROW 2
CVAPI(CvStereoBMState*) cvCreateStereoBMState(int preset CV_DEFAULT(CV_STEREO_BM_BASIC),
int numberOfDisparities CV_DEFAULT(0));
CVAPI(void) cvReleaseStereoBMState( CvStereoBMState** state );
CVAPI(void) cvFindStereoCorrespondenceBM( const CvArr* left, const CvArr* right,
CvArr* disparity, CvStereoBMState* state );
CVAPI(CvRect) cvGetValidDisparityROI( CvRect roi1, CvRect roi2, int minDisparity,
int numberOfDisparities, int SADWindowSize );
CVAPI(void) cvValidateDisparity( CvArr* disparity, const CvArr* cost,
int minDisparity, int numberOfDisparities,
int disp12MaxDiff CV_DEFAULT(1) );
/* Kolmogorov-Zabin stereo-correspondence algorithm (a.k.a. KZ1) */
#define CV_STEREO_GC_OCCLUDED SHRT_MAX
typedef struct CvStereoGCState
{
int Ithreshold;
int interactionRadius;
float K, lambda, lambda1, lambda2;
int occlusionCost;
int minDisparity;
int numberOfDisparities;
int maxIters;
CvMat* left;
CvMat* right;
CvMat* dispLeft;
CvMat* dispRight;
CvMat* ptrLeft;
CvMat* ptrRight;
CvMat* vtxBuf;
CvMat* edgeBuf;
} CvStereoGCState;
CVAPI(CvStereoGCState*) cvCreateStereoGCState( int numberOfDisparities, int maxIters );
CVAPI(void) cvReleaseStereoGCState( CvStereoGCState** state );
CVAPI(void) cvFindStereoCorrespondenceGC( const CvArr* left, const CvArr* right,
CvArr* disparityLeft, CvArr* disparityRight,
CvStereoGCState* state,
int useDisparityGuess CV_DEFAULT(0) );
/* Reprojects the computed disparity image to the 3D space using the specified 4x4 matrix */
CVAPI(void) cvReprojectImageTo3D( const CvArr* disparityImage,
CvArr* _3dImage, const CvMat* Q,
int handleMissingValues CV_DEFAULT(0) );
#ifdef __cplusplus
}
//////////////////////////////////////////////////////////////////////////////////////////
class CV_EXPORTS CvLevMarq
{
public:
CvLevMarq();
CvLevMarq( int nparams, int nerrs, CvTermCriteria criteria=
cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON),
bool completeSymmFlag=false );
~CvLevMarq();
void init( int nparams, int nerrs, CvTermCriteria criteria=
cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON),
bool completeSymmFlag=false );
bool update( const CvMat*& param, CvMat*& J, CvMat*& err );
bool updateAlt( const CvMat*& param, CvMat*& JtJ, CvMat*& JtErr, double*& errNorm );
void clear();
void step();
enum { DONE=0, STARTED=1, CALC_J=2, CHECK_ERR=3 };
cv::Ptr<CvMat> mask;
cv::Ptr<CvMat> prevParam;
cv::Ptr<CvMat> param;
cv::Ptr<CvMat> J;
cv::Ptr<CvMat> err;
cv::Ptr<CvMat> JtJ;
cv::Ptr<CvMat> JtJN;
cv::Ptr<CvMat> JtErr;
cv::Ptr<CvMat> JtJV;
cv::Ptr<CvMat> JtJW;
double prevErrNorm, errNorm;
int lambdaLg10;
CvTermCriteria criteria;
int state;
int iters;
bool completeSymmFlag;
};
namespace cv
{
//! converts rotation vector to rotation matrix or vice versa using Rodrigues transformation
CV_EXPORTS_W void Rodrigues(const Mat& src, CV_OUT Mat& dst);
//! converts rotation vector to rotation matrix or vice versa using Rodrigues transformation. Also computes the Jacobian matrix
CV_EXPORTS_AS(RodriguesJ) void Rodrigues(const Mat& src, CV_OUT Mat& dst, CV_OUT Mat& jacobian);
//! type of the robust estimation algorithm
enum
{
LMEDS=4, //!< least-median algorithm
RANSAC=8 //!< RANSAC algorithm
};
//! computes the best-fit perspective transformation mapping srcPoints to dstPoints.
CV_EXPORTS_AS(findHomographyAndOutliers) Mat findHomography( const Mat& srcPoints,
const Mat& dstPoints,
vector<uchar>& mask, int method=0,
double ransacReprojThreshold=3 );
//! computes the best-fit perspective transformation mapping srcPoints to dstPoints.
CV_EXPORTS_W Mat findHomography( const Mat& srcPoints,
const Mat& dstPoints,
int method=0, double ransacReprojThreshold=3 );
//! Computes RQ decomposition of 3x3 matrix
CV_EXPORTS void RQDecomp3x3( const Mat& M, Mat& R, Mat& Q );
//! Computes RQ decomposition of 3x3 matrix. Also, decomposes the output orthogonal matrix into the 3 primitive rotation matrices
CV_EXPORTS_W Vec3d RQDecomp3x3( const Mat& M, Mat& R, Mat& Q,
CV_OUT Mat& Qx, CV_OUT Mat& Qy, CV_OUT Mat& Qz );
//! Decomposes the projection matrix into camera matrix and the rotation martix and the translation vector
CV_EXPORTS void decomposeProjectionMatrix( const Mat& projMatrix, Mat& cameraMatrix,
Mat& rotMatrix, Mat& transVect );
//! Decomposes the projection matrix into camera matrix and the rotation martix and the translation vector. The rotation matrix is further decomposed
CV_EXPORTS_W void decomposeProjectionMatrix( const Mat& projMatrix, CV_OUT Mat& cameraMatrix,
CV_OUT Mat& rotMatrix, CV_OUT Mat& transVect,
CV_OUT Mat& rotMatrixX, CV_OUT Mat& rotMatrixY,
CV_OUT Mat& rotMatrixZ, CV_OUT Vec3d& eulerAngles );
//! computes derivatives of the matrix product w.r.t each of the multiplied matrix coefficients
CV_EXPORTS_W void matMulDeriv( const Mat& A, const Mat& B, CV_OUT Mat& dABdA, CV_OUT Mat& dABdB );
//! composes 2 [R|t] transformations together
CV_EXPORTS_W void composeRT( const Mat& rvec1, const Mat& tvec1,
const Mat& rvec2, const Mat& tvec2,
CV_OUT Mat& rvec3, CV_OUT Mat& tvec3 );
//! composes 2 [R|t] transformations together. Also computes the derivatives of the result w.r.t the arguments
CV_EXPORTS_AS(composeRT_J) void composeRT( const Mat& rvec1, const Mat& tvec1,
const Mat& rvec2, const Mat& tvec2,
CV_OUT Mat& rvec3, CV_OUT Mat& tvec3,
CV_OUT Mat& dr3dr1, CV_OUT Mat& dr3dt1,
CV_OUT Mat& dr3dr2, CV_OUT Mat& dr3dt2,
CV_OUT Mat& dt3dr1, CV_OUT Mat& dt3dt1,
CV_OUT Mat& dt3dr2, CV_OUT Mat& dt3dt2 );
//! projects points from the model coordinate space to the image coordinates. Takes the intrinsic and extrinsic camera parameters into account
CV_EXPORTS_W void projectPoints( const Mat& objectPoints,
const Mat& rvec, const Mat& tvec,
const Mat& cameraMatrix,
const Mat& distCoeffs,
CV_OUT vector<Point2f>& imagePoints );
//! projects points from the model coordinate space to the image coordinates. Also computes derivatives of the image coordinates w.r.t the intrinsic and extrinsic camera parameters
CV_EXPORTS_AS(projectPointsJ) void projectPoints( const Mat& objectPoints,
const Mat& rvec, const Mat& tvec,
const Mat& cameraMatrix,
const Mat& distCoeffs,
CV_OUT vector<Point2f>& imagePoints,
CV_OUT Mat& dpdrot, CV_OUT Mat& dpdt, CV_OUT Mat& dpdf,
CV_OUT Mat& dpdc, CV_OUT Mat& dpddist,
double aspectRatio=0 );
//! computes the camera pose from a few 3D points and the corresponding projections. The outliers are not handled.
CV_EXPORTS_W void solvePnP( const Mat& objectPoints,
const Mat& imagePoints,
const Mat& cameraMatrix,
const Mat& distCoeffs,
CV_OUT Mat& rvec, CV_OUT Mat& tvec,
bool useExtrinsicGuess=false );
//! initializes camera matrix from a few 3D points and the corresponding projections.
CV_EXPORTS_W Mat initCameraMatrix2D( const vector<vector<Point3f> >& objectPoints,
const vector<vector<Point2f> >& imagePoints,
Size imageSize, double aspectRatio=1. );
enum { CALIB_CB_ADAPTIVE_THRESH = 1, CALIB_CB_NORMALIZE_IMAGE = 2,
CALIB_CB_FILTER_QUADS = 4, CALIB_CB_FAST_CHECK = 8 };
//! finds checkerboard pattern of the specified size in the image
CV_EXPORTS_W bool findChessboardCorners( const Mat& image, Size patternSize,
CV_OUT vector<Point2f>& corners,
int flags=CALIB_CB_ADAPTIVE_THRESH+
CALIB_CB_NORMALIZE_IMAGE );
//! draws the checkerboard pattern (found or partly found) in the image
CV_EXPORTS_W void drawChessboardCorners( Mat& image, Size patternSize,
const Mat& corners,
bool patternWasFound );
CV_EXPORTS void drawChessboardCorners( Mat& image, Size patternSize,
const vector<Point2f>& corners,
bool patternWasFound );
enum
{
CALIB_USE_INTRINSIC_GUESS = 1,
CALIB_FIX_ASPECT_RATIO = 2,
CALIB_FIX_PRINCIPAL_POINT = 4,
CALIB_ZERO_TANGENT_DIST = 8,
CALIB_FIX_FOCAL_LENGTH = 16,
CALIB_FIX_K1 = 32,
CALIB_FIX_K2 = 64,
CALIB_FIX_K3 = 128,
CALIB_FIX_K4 = 2048,
CALIB_FIX_K5 = 4096,
CALIB_FIX_K6 = 8192,
// only for stereo
CALIB_FIX_INTRINSIC = 256,
CALIB_SAME_FOCAL_LENGTH = 512,
// for stereo rectification
CALIB_ZERO_DISPARITY = 1024
};
//! finds intrinsic and extrinsic camera parameters from several fews of a known calibration pattern.
CV_EXPORTS_W double calibrateCamera( const vector<vector<Point3f> >& objectPoints,
const vector<vector<Point2f> >& imagePoints,
Size imageSize,
CV_IN_OUT Mat& cameraMatrix,
CV_IN_OUT Mat& distCoeffs,
CV_OUT vector<Mat>& rvecs, CV_OUT vector<Mat>& tvecs,
int flags=0 );
//! computes several useful camera characteristics from the camera matrix, camera frame resolution and the physical sensor size.
CV_EXPORTS_W void calibrationMatrixValues( const Mat& cameraMatrix,
Size imageSize,
double apertureWidth,
double apertureHeight,
CV_OUT double& fovx,
CV_OUT double& fovy,
CV_OUT double& focalLength,
CV_OUT Point2d& principalPoint,
CV_OUT double& aspectRatio );
//! finds intrinsic and extrinsic parameters of a stereo camera
CV_EXPORTS_W double stereoCalibrate( const vector<vector<Point3f> >& objectPoints,
const vector<vector<Point2f> >& imagePoints1,
const vector<vector<Point2f> >& imagePoints2,
CV_IN_OUT Mat& cameraMatrix1, CV_IN_OUT Mat& distCoeffs1,
CV_IN_OUT Mat& cameraMatrix2, CV_IN_OUT Mat& distCoeffs2,
Size imageSize, CV_OUT Mat& R, CV_OUT Mat& T,
CV_OUT Mat& E, CV_OUT Mat& F,
TermCriteria criteria = TermCriteria(TermCriteria::COUNT+
TermCriteria::EPS, 30, 1e-6),
int flags=CALIB_FIX_INTRINSIC );
//! computes the rectification transformation for a stereo camera from its intrinsic and extrinsic parameters
CV_EXPORTS void stereoRectify( const Mat& cameraMatrix1, const Mat& distCoeffs1,
const Mat& cameraMatrix2, const Mat& distCoeffs2,
Size imageSize, const Mat& R, const Mat& T,
CV_OUT Mat& R1, CV_OUT Mat& R2,
CV_OUT Mat& P1, CV_OUT Mat& P2, CV_OUT Mat& Q,
int flags=CALIB_ZERO_DISPARITY );
//! computes the rectification transformation for a stereo camera from its intrinsic and extrinsic parameters
CV_EXPORTS_W void stereoRectify( const Mat& cameraMatrix1, const Mat& distCoeffs1,
const Mat& cameraMatrix2, const Mat& distCoeffs2,
Size imageSize, const Mat& R, const Mat& T,
CV_OUT Mat& R1, CV_OUT Mat& R2,
CV_OUT Mat& P1, CV_OUT Mat& P2, CV_OUT Mat& Q,
double alpha, Size newImageSize=Size(),
CV_OUT Rect* validPixROI1=0, CV_OUT Rect* validPixROI2=0,
int flags=CALIB_ZERO_DISPARITY );
//! computes the rectification transformation for an uncalibrated stereo camera (zero distortion is assumed)
CV_EXPORTS_W bool stereoRectifyUncalibrated( const Mat& points1, const Mat& points2,
const Mat& F, Size imgSize,
CV_OUT Mat& H1, CV_OUT Mat& H2,
double threshold=5 );
//! computes the rectification transformations for 3-head camera, where all the heads are on the same line.
CV_EXPORTS_W float rectify3Collinear( const Mat& cameraMatrix1, const Mat& distCoeffs1,
const Mat& cameraMatrix2, const Mat& distCoeffs2,
const Mat& cameraMatrix3, const Mat& distCoeffs3,
const vector<vector<Point2f> >& imgpt1,
const vector<vector<Point2f> >& imgpt3,
Size imageSize, const Mat& R12, const Mat& T12,
const Mat& R13, const Mat& T13,
CV_OUT Mat& R1, CV_OUT Mat& R2, CV_OUT Mat& R3,
CV_OUT Mat& P1, CV_OUT Mat& P2, CV_OUT Mat& P3, CV_OUT Mat& Q,
double alpha, Size newImgSize,
CV_OUT Rect* roi1, CV_OUT Rect* roi2, int flags );
//! returns the optimal new camera matrix
CV_EXPORTS_W Mat getOptimalNewCameraMatrix( const Mat& cameraMatrix, const Mat& distCoeffs,
Size imageSize, double alpha, Size newImgSize=Size(),
CV_OUT Rect* validPixROI=0);
//! converts point coordinates from normal pixel coordinates to homogeneous coordinates ((x,y)->(x,y,1))
CV_EXPORTS void convertPointsHomogeneous( const Mat& src, CV_OUT vector<Point3f>& dst );
//! converts point coordinates from homogeneous to normal pixel coordinates ((x,y,z)->(x/z, y/z))
CV_EXPORTS void convertPointsHomogeneous( const Mat& src, CV_OUT vector<Point2f>& dst );
//! the algorithm for finding fundamental matrix
enum
{
FM_7POINT = 1, //!< 7-point algorithm
FM_8POINT = 2, //!< 8-point algorithm
FM_LMEDS = 4, //!< least-median algorithm
FM_RANSAC = 8 //!< RANSAC algorithm
};
//! finds fundamental matrix from a set of corresponding 2D points
CV_EXPORTS Mat findFundamentalMat( const Mat& points1, const Mat& points2,
CV_OUT vector<uchar>& mask, int method=FM_RANSAC,
double param1=3., double param2=0.99 );
//! finds fundamental matrix from a set of corresponding 2D points
CV_EXPORTS_W Mat findFundamentalMat( const Mat& points1, const Mat& points2,
int method=FM_RANSAC,
double param1=3., double param2=0.99 );
//! finds coordinates of epipolar lines corresponding the specified points
CV_EXPORTS void computeCorrespondEpilines( const Mat& points1,
int whichImage, const Mat& F,
CV_OUT vector<Vec3f>& lines );
template<> CV_EXPORTS void Ptr<CvStereoBMState>::delete_obj();
/*!
Block Matching Stereo Correspondence Algorithm
The class implements BM stereo correspondence algorithm by K. Konolige.
*/
class CV_EXPORTS_W StereoBM
{
public:
enum { PREFILTER_NORMALIZED_RESPONSE = 0, PREFILTER_XSOBEL = 1,
BASIC_PRESET=0, FISH_EYE_PRESET=1, NARROW_PRESET=2 };
//! the default constructor
CV_WRAP StereoBM();
//! the full constructor taking the camera-specific preset, number of disparities and the SAD window size
CV_WRAP StereoBM(int preset, int ndisparities=0, int SADWindowSize=21);
//! the method that reinitializes the state. The previous content is destroyed
void init(int preset, int ndisparities=0, int SADWindowSize=21);
//! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair
CV_WRAP_AS(compute) void operator()( const Mat& left, const Mat& right, Mat& disparity, int disptype=CV_16S );
//! pointer to the underlying CvStereoBMState
Ptr<CvStereoBMState> state;
};
/*!
Semi-Global Block Matching Stereo Correspondence Algorithm
The class implements the original SGBM stereo correspondence algorithm by H. Hirschmuller and some its modification.
*/
class CV_EXPORTS_W StereoSGBM
{
public:
enum { DISP_SHIFT=4, DISP_SCALE = (1<<DISP_SHIFT) };
//! the default constructor
CV_WRAP StereoSGBM();
//! the full constructor taking all the necessary algorithm parameters
CV_WRAP StereoSGBM(int minDisparity, int numDisparities, int SADWindowSize,
int P1=0, int P2=0, int disp12MaxDiff=0,
int preFilterCap=0, int uniquenessRatio=0,
int speckleWindowSize=0, int speckleRange=0,
bool fullDP=false);
//! the destructor
virtual ~StereoSGBM();
//! the stereo correspondence operator that computes disparity map for the specified rectified stereo pair
CV_WRAP_AS(compute) virtual void operator()(const Mat& left, const Mat& right, Mat& disp);
CV_PROP_RW int minDisparity;
CV_PROP_RW int numberOfDisparities;
CV_PROP_RW int SADWindowSize;
CV_PROP_RW int preFilterCap;
CV_PROP_RW int uniquenessRatio;
CV_PROP_RW int P1;
CV_PROP_RW int P2;
CV_PROP_RW int speckleWindowSize;
CV_PROP_RW int speckleRange;
CV_PROP_RW int disp12MaxDiff;
CV_PROP_RW bool fullDP;
protected:
Mat buffer;
};
//! filters off speckles (small regions of incorrectly computed disparity)
CV_EXPORTS_W void filterSpeckles( Mat& img, double newVal, int maxSpeckleSize, double maxDiff, Mat& buf );
//! computes valid disparity ROI from the valid ROIs of the rectified images (that are returned by cv::stereoRectify())
CV_EXPORTS_W Rect getValidDisparityROI( Rect roi1, Rect roi2,
int minDisparity, int numberOfDisparities,
int SADWindowSize );
//! validates disparity using the left-right check. The matrix "cost" should be computed by the stereo correspondence algorithm
CV_EXPORTS_W void validateDisparity( Mat& disparity, const Mat& cost,
int minDisparity, int numberOfDisparities,
int disp12MaxDisp=1 );
//! reprojects disparity image to 3D: (x,y,d)->(X,Y,Z) using the matrix Q returned by cv::stereoRectify
CV_EXPORTS_W void reprojectImageTo3D( const Mat& disparity,
CV_OUT Mat& _3dImage, const Mat& Q,
bool handleMissingValues=false );
}
#endif
#endif