opencv/modules/calib3d/test/test_stereomatching.cpp
2017-04-27 10:05:55 +00:00

806 lines
31 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/*
This is a regression test for stereo matching algorithms. This test gets some quality metrics
discribed in "A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms".
Daniel Scharstein, Richard Szeliski
*/
#include "test_precomp.hpp"
#include <limits>
#include <cstdio>
#include <map>
using namespace std;
using namespace cv;
const float EVAL_BAD_THRESH = 1.f;
const int EVAL_TEXTURELESS_WIDTH = 3;
const float EVAL_TEXTURELESS_THRESH = 4.f;
const float EVAL_DISP_THRESH = 1.f;
const float EVAL_DISP_GAP = 2.f;
const int EVAL_DISCONT_WIDTH = 9;
const int EVAL_IGNORE_BORDER = 10;
const int ERROR_KINDS_COUNT = 6;
//============================== quality measuring functions =================================================
/*
Calculate textureless regions of image (regions where the squared horizontal intensity gradient averaged over
a square window of size=evalTexturelessWidth is below a threshold=evalTexturelessThresh) and textured regions.
*/
void computeTextureBasedMasks( const Mat& _img, Mat* texturelessMask, Mat* texturedMask,
int texturelessWidth = EVAL_TEXTURELESS_WIDTH, float texturelessThresh = EVAL_TEXTURELESS_THRESH )
{
if( !texturelessMask && !texturedMask )
return;
if( _img.empty() )
CV_Error( Error::StsBadArg, "img is empty" );
Mat img = _img;
if( _img.channels() > 1)
{
Mat tmp; cvtColor( _img, tmp, COLOR_BGR2GRAY ); img = tmp;
}
Mat dxI; Sobel( img, dxI, CV_32FC1, 1, 0, 3 );
Mat dxI2; pow( dxI / 8.f/*normalize*/, 2, dxI2 );
Mat avgDxI2; boxFilter( dxI2, avgDxI2, CV_32FC1, Size(texturelessWidth,texturelessWidth) );
if( texturelessMask )
*texturelessMask = avgDxI2 < texturelessThresh;
if( texturedMask )
*texturedMask = avgDxI2 >= texturelessThresh;
}
void checkTypeAndSizeOfDisp( const Mat& dispMap, const Size* sz )
{
if( dispMap.empty() )
CV_Error( Error::StsBadArg, "dispMap is empty" );
if( dispMap.type() != CV_32FC1 )
CV_Error( Error::StsBadArg, "dispMap must have CV_32FC1 type" );
if( sz && (dispMap.rows != sz->height || dispMap.cols != sz->width) )
CV_Error( Error::StsBadArg, "dispMap has incorrect size" );
}
void checkTypeAndSizeOfMask( const Mat& mask, Size sz )
{
if( mask.empty() )
CV_Error( Error::StsBadArg, "mask is empty" );
if( mask.type() != CV_8UC1 )
CV_Error( Error::StsBadArg, "mask must have CV_8UC1 type" );
if( mask.rows != sz.height || mask.cols != sz.width )
CV_Error( Error::StsBadArg, "mask has incorrect size" );
}
void checkDispMapsAndUnknDispMasks( const Mat& leftDispMap, const Mat& rightDispMap,
const Mat& leftUnknDispMask, const Mat& rightUnknDispMask )
{
// check type and size of disparity maps
checkTypeAndSizeOfDisp( leftDispMap, 0 );
if( !rightDispMap.empty() )
{
Size sz = leftDispMap.size();
checkTypeAndSizeOfDisp( rightDispMap, &sz );
}
// check size and type of unknown disparity maps
if( !leftUnknDispMask.empty() )
checkTypeAndSizeOfMask( leftUnknDispMask, leftDispMap.size() );
if( !rightUnknDispMask.empty() )
checkTypeAndSizeOfMask( rightUnknDispMask, rightDispMap.size() );
// check values of disparity maps (known disparity values musy be positive)
double leftMinVal = 0, rightMinVal = 0;
if( leftUnknDispMask.empty() )
minMaxLoc( leftDispMap, &leftMinVal );
else
minMaxLoc( leftDispMap, &leftMinVal, 0, 0, 0, ~leftUnknDispMask );
if( !rightDispMap.empty() )
{
if( rightUnknDispMask.empty() )
minMaxLoc( rightDispMap, &rightMinVal );
else
minMaxLoc( rightDispMap, &rightMinVal, 0, 0, 0, ~rightUnknDispMask );
}
if( leftMinVal < 0 || rightMinVal < 0)
CV_Error( Error::StsBadArg, "known disparity values must be positive" );
}
/*
Calculate occluded regions of reference image (left image) (regions that are occluded in the matching image (right image),
i.e., where the forward-mapped disparity lands at a location with a larger (nearer) disparity) and non occluded regions.
*/
void computeOcclusionBasedMasks( const Mat& leftDisp, const Mat& _rightDisp,
Mat* occludedMask, Mat* nonOccludedMask,
const Mat& leftUnknDispMask = Mat(), const Mat& rightUnknDispMask = Mat(),
float dispThresh = EVAL_DISP_THRESH )
{
if( !occludedMask && !nonOccludedMask )
return;
checkDispMapsAndUnknDispMasks( leftDisp, _rightDisp, leftUnknDispMask, rightUnknDispMask );
Mat rightDisp;
if( _rightDisp.empty() )
{
if( !rightUnknDispMask.empty() )
CV_Error( Error::StsBadArg, "rightUnknDispMask must be empty if _rightDisp is empty" );
rightDisp.create(leftDisp.size(), CV_32FC1);
rightDisp.setTo(Scalar::all(0) );
for( int leftY = 0; leftY < leftDisp.rows; leftY++ )
{
for( int leftX = 0; leftX < leftDisp.cols; leftX++ )
{
if( !leftUnknDispMask.empty() && leftUnknDispMask.at<uchar>(leftY,leftX) )
continue;
float leftDispVal = leftDisp.at<float>(leftY, leftX);
int rightX = leftX - cvRound(leftDispVal), rightY = leftY;
if( rightX >= 0)
rightDisp.at<float>(rightY,rightX) = max(rightDisp.at<float>(rightY,rightX), leftDispVal);
}
}
}
else
_rightDisp.copyTo(rightDisp);
if( occludedMask )
{
occludedMask->create(leftDisp.size(), CV_8UC1);
occludedMask->setTo(Scalar::all(0) );
}
if( nonOccludedMask )
{
nonOccludedMask->create(leftDisp.size(), CV_8UC1);
nonOccludedMask->setTo(Scalar::all(0) );
}
for( int leftY = 0; leftY < leftDisp.rows; leftY++ )
{
for( int leftX = 0; leftX < leftDisp.cols; leftX++ )
{
if( !leftUnknDispMask.empty() && leftUnknDispMask.at<uchar>(leftY,leftX) )
continue;
float leftDispVal = leftDisp.at<float>(leftY, leftX);
int rightX = leftX - cvRound(leftDispVal), rightY = leftY;
if( rightX < 0 && occludedMask )
occludedMask->at<uchar>(leftY, leftX) = 255;
else
{
if( !rightUnknDispMask.empty() && rightUnknDispMask.at<uchar>(rightY,rightX) )
continue;
float rightDispVal = rightDisp.at<float>(rightY, rightX);
if( rightDispVal > leftDispVal + dispThresh )
{
if( occludedMask )
occludedMask->at<uchar>(leftY, leftX) = 255;
}
else
{
if( nonOccludedMask )
nonOccludedMask->at<uchar>(leftY, leftX) = 255;
}
}
}
}
}
/*
Calculate depth discontinuty regions: pixels whose neiboring disparities differ by more than
dispGap, dilated by window of width discontWidth.
*/
void computeDepthDiscontMask( const Mat& disp, Mat& depthDiscontMask, const Mat& unknDispMask = Mat(),
float dispGap = EVAL_DISP_GAP, int discontWidth = EVAL_DISCONT_WIDTH )
{
if( disp.empty() )
CV_Error( Error::StsBadArg, "disp is empty" );
if( disp.type() != CV_32FC1 )
CV_Error( Error::StsBadArg, "disp must have CV_32FC1 type" );
if( !unknDispMask.empty() )
checkTypeAndSizeOfMask( unknDispMask, disp.size() );
Mat curDisp; disp.copyTo( curDisp );
if( !unknDispMask.empty() )
curDisp.setTo( Scalar(numeric_limits<float>::min()), unknDispMask );
Mat maxNeighbDisp; dilate( curDisp, maxNeighbDisp, Mat(3, 3, CV_8UC1, Scalar(1)) );
if( !unknDispMask.empty() )
curDisp.setTo( Scalar(numeric_limits<float>::max()), unknDispMask );
Mat minNeighbDisp; erode( curDisp, minNeighbDisp, Mat(3, 3, CV_8UC1, Scalar(1)) );
depthDiscontMask = max( (Mat)(maxNeighbDisp-disp), (Mat)(disp-minNeighbDisp) ) > dispGap;
if( !unknDispMask.empty() )
depthDiscontMask &= ~unknDispMask;
dilate( depthDiscontMask, depthDiscontMask, Mat(discontWidth, discontWidth, CV_8UC1, Scalar(1)) );
}
/*
Get evaluation masks excluding a border.
*/
Mat getBorderedMask( Size maskSize, int border = EVAL_IGNORE_BORDER )
{
CV_Assert( border >= 0 );
Mat mask(maskSize, CV_8UC1, Scalar(0));
int w = maskSize.width - 2*border, h = maskSize.height - 2*border;
if( w < 0 || h < 0 )
mask.setTo(Scalar(0));
else
mask( Rect(Point(border,border),Size(w,h)) ).setTo(Scalar(255));
return mask;
}
/*
Calculate root-mean-squared error between the computed disparity map (computedDisp) and ground truth map (groundTruthDisp).
*/
float dispRMS( const Mat& computedDisp, const Mat& groundTruthDisp, const Mat& mask )
{
checkTypeAndSizeOfDisp( groundTruthDisp, 0 );
Size sz = groundTruthDisp.size();
checkTypeAndSizeOfDisp( computedDisp, &sz );
int pointsCount = sz.height*sz.width;
if( !mask.empty() )
{
checkTypeAndSizeOfMask( mask, sz );
pointsCount = countNonZero(mask);
}
return 1.f/sqrt((float)pointsCount) * (float)cvtest::norm(computedDisp, groundTruthDisp, NORM_L2, mask);
}
/*
Calculate fraction of bad matching pixels.
*/
float badMatchPxlsFraction( const Mat& computedDisp, const Mat& groundTruthDisp, const Mat& mask,
float _badThresh = EVAL_BAD_THRESH )
{
int badThresh = cvRound(_badThresh);
checkTypeAndSizeOfDisp( groundTruthDisp, 0 );
Size sz = groundTruthDisp.size();
checkTypeAndSizeOfDisp( computedDisp, &sz );
Mat badPxlsMap;
absdiff( computedDisp, groundTruthDisp, badPxlsMap );
badPxlsMap = badPxlsMap > badThresh;
int pointsCount = sz.height*sz.width;
if( !mask.empty() )
{
checkTypeAndSizeOfMask( mask, sz );
badPxlsMap = badPxlsMap & mask;
pointsCount = countNonZero(mask);
}
return 1.f/pointsCount * countNonZero(badPxlsMap);
}
//===================== regression test for stereo matching algorithms ==============================
const string ALGORITHMS_DIR = "stereomatching/algorithms/";
const string DATASETS_DIR = "stereomatching/datasets/";
const string DATASETS_FILE = "datasets.xml";
const string RUN_PARAMS_FILE = "_params.xml";
const string RESULT_FILE = "_res.xml";
const string LEFT_IMG_NAME = "im2.png";
const string RIGHT_IMG_NAME = "im6.png";
const string TRUE_LEFT_DISP_NAME = "disp2.png";
const string TRUE_RIGHT_DISP_NAME = "disp6.png";
string ERROR_PREFIXES[] = { "borderedAll",
"borderedNoOccl",
"borderedOccl",
"borderedTextured",
"borderedTextureless",
"borderedDepthDiscont" }; // size of ERROR_KINDS_COUNT
const string RMS_STR = "RMS";
const string BAD_PXLS_FRACTION_STR = "BadPxlsFraction";
class QualityEvalParams
{
public:
QualityEvalParams() { setDefaults(); }
QualityEvalParams( int _ignoreBorder )
{
setDefaults();
ignoreBorder = _ignoreBorder;
}
void setDefaults()
{
badThresh = EVAL_BAD_THRESH;
texturelessWidth = EVAL_TEXTURELESS_WIDTH;
texturelessThresh = EVAL_TEXTURELESS_THRESH;
dispThresh = EVAL_DISP_THRESH;
dispGap = EVAL_DISP_GAP;
discontWidth = EVAL_DISCONT_WIDTH;
ignoreBorder = EVAL_IGNORE_BORDER;
}
float badThresh;
int texturelessWidth;
float texturelessThresh;
float dispThresh;
float dispGap;
int discontWidth;
int ignoreBorder;
};
class CV_StereoMatchingTest : public cvtest::BaseTest
{
public:
CV_StereoMatchingTest()
{ rmsEps.resize( ERROR_KINDS_COUNT, 0.01f ); fracEps.resize( ERROR_KINDS_COUNT, 1.e-6f ); }
protected:
// assumed that left image is a reference image
virtual int runStereoMatchingAlgorithm( const Mat& leftImg, const Mat& rightImg,
Mat& leftDisp, Mat& rightDisp, int caseIdx ) = 0; // return ignored border width
int readDatasetsParams( FileStorage& fs );
virtual int readRunParams( FileStorage& fs );
void writeErrors( const string& errName, const vector<float>& errors, FileStorage* fs = 0 );
void readErrors( FileNode& fn, const string& errName, vector<float>& errors );
int compareErrors( const vector<float>& calcErrors, const vector<float>& validErrors,
const vector<float>& eps, const string& errName );
int processStereoMatchingResults( FileStorage& fs, int caseIdx, bool isWrite,
const Mat& leftImg, const Mat& rightImg,
const Mat& trueLeftDisp, const Mat& trueRightDisp,
const Mat& leftDisp, const Mat& rightDisp,
const QualityEvalParams& qualityEvalParams );
void run( int );
vector<float> rmsEps;
vector<float> fracEps;
struct DatasetParams
{
int dispScaleFactor;
int dispUnknVal;
};
map<string, DatasetParams> datasetsParams;
vector<string> caseNames;
vector<string> caseDatasets;
};
void CV_StereoMatchingTest::run(int)
{
string dataPath = ts->get_data_path() + "cv/";
string algorithmName = name;
assert( !algorithmName.empty() );
if( dataPath.empty() )
{
ts->printf( cvtest::TS::LOG, "dataPath is empty" );
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ARG_CHECK );
return;
}
FileStorage datasetsFS( dataPath + DATASETS_DIR + DATASETS_FILE, FileStorage::READ );
int code = readDatasetsParams( datasetsFS );
if( code != cvtest::TS::OK )
{
ts->set_failed_test_info( code );
return;
}
FileStorage runParamsFS( dataPath + ALGORITHMS_DIR + algorithmName + RUN_PARAMS_FILE, FileStorage::READ );
code = readRunParams( runParamsFS );
if( code != cvtest::TS::OK )
{
ts->set_failed_test_info( code );
return;
}
string fullResultFilename = dataPath + ALGORITHMS_DIR + algorithmName + RESULT_FILE;
FileStorage resFS( fullResultFilename, FileStorage::READ );
bool isWrite = true; // write or compare results
if( resFS.isOpened() )
isWrite = false;
else
{
resFS.open( fullResultFilename, FileStorage::WRITE );
if( !resFS.isOpened() )
{
ts->printf( cvtest::TS::LOG, "file %s can not be read or written\n", fullResultFilename.c_str() );
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ARG_CHECK );
return;
}
resFS << "stereo_matching" << "{";
}
int progress = 0, caseCount = (int)caseNames.size();
for( int ci = 0; ci < caseCount; ci++)
{
progress = update_progress( progress, ci, caseCount, 0 );
printf("progress: %d%%\n", progress);
fflush(stdout);
string datasetName = caseDatasets[ci];
string datasetFullDirName = dataPath + DATASETS_DIR + datasetName + "/";
Mat leftImg = imread(datasetFullDirName + LEFT_IMG_NAME);
Mat rightImg = imread(datasetFullDirName + RIGHT_IMG_NAME);
Mat trueLeftDisp = imread(datasetFullDirName + TRUE_LEFT_DISP_NAME, 0);
Mat trueRightDisp = imread(datasetFullDirName + TRUE_RIGHT_DISP_NAME, 0);
if( leftImg.empty() || rightImg.empty() || trueLeftDisp.empty() )
{
ts->printf( cvtest::TS::LOG, "images or left ground-truth disparities of dataset %s can not be read", datasetName.c_str() );
code = cvtest::TS::FAIL_INVALID_TEST_DATA;
continue;
}
int dispScaleFactor = datasetsParams[datasetName].dispScaleFactor;
Mat tmp;
trueLeftDisp.convertTo( tmp, CV_32FC1, 1.f/dispScaleFactor );
trueLeftDisp = tmp;
tmp.release();
if( !trueRightDisp.empty() )
{
trueRightDisp.convertTo( tmp, CV_32FC1, 1.f/dispScaleFactor );
trueRightDisp = tmp;
tmp.release();
}
Mat leftDisp, rightDisp;
int ignBorder = max(runStereoMatchingAlgorithm(leftImg, rightImg, leftDisp, rightDisp, ci), EVAL_IGNORE_BORDER);
leftDisp.convertTo( tmp, CV_32FC1 );
leftDisp = tmp;
tmp.release();
rightDisp.convertTo( tmp, CV_32FC1 );
rightDisp = tmp;
tmp.release();
int tempCode = processStereoMatchingResults( resFS, ci, isWrite,
leftImg, rightImg, trueLeftDisp, trueRightDisp, leftDisp, rightDisp, QualityEvalParams(ignBorder));
code = tempCode==cvtest::TS::OK ? code : tempCode;
}
if( isWrite )
resFS << "}"; // "stereo_matching"
ts->set_failed_test_info( code );
}
void calcErrors( const Mat& leftImg, const Mat& /*rightImg*/,
const Mat& trueLeftDisp, const Mat& trueRightDisp,
const Mat& trueLeftUnknDispMask, const Mat& trueRightUnknDispMask,
const Mat& calcLeftDisp, const Mat& /*calcRightDisp*/,
vector<float>& rms, vector<float>& badPxlsFractions,
const QualityEvalParams& qualityEvalParams )
{
Mat texturelessMask, texturedMask;
computeTextureBasedMasks( leftImg, &texturelessMask, &texturedMask,
qualityEvalParams.texturelessWidth, qualityEvalParams.texturelessThresh );
Mat occludedMask, nonOccludedMask;
computeOcclusionBasedMasks( trueLeftDisp, trueRightDisp, &occludedMask, &nonOccludedMask,
trueLeftUnknDispMask, trueRightUnknDispMask, qualityEvalParams.dispThresh);
Mat depthDiscontMask;
computeDepthDiscontMask( trueLeftDisp, depthDiscontMask, trueLeftUnknDispMask,
qualityEvalParams.dispGap, qualityEvalParams.discontWidth);
Mat borderedKnownMask = getBorderedMask( leftImg.size(), qualityEvalParams.ignoreBorder ) & ~trueLeftUnknDispMask;
nonOccludedMask &= borderedKnownMask;
occludedMask &= borderedKnownMask;
texturedMask &= nonOccludedMask; // & borderedKnownMask
texturelessMask &= nonOccludedMask; // & borderedKnownMask
depthDiscontMask &= nonOccludedMask; // & borderedKnownMask
rms.resize(ERROR_KINDS_COUNT);
rms[0] = dispRMS( calcLeftDisp, trueLeftDisp, borderedKnownMask );
rms[1] = dispRMS( calcLeftDisp, trueLeftDisp, nonOccludedMask );
rms[2] = dispRMS( calcLeftDisp, trueLeftDisp, occludedMask );
rms[3] = dispRMS( calcLeftDisp, trueLeftDisp, texturedMask );
rms[4] = dispRMS( calcLeftDisp, trueLeftDisp, texturelessMask );
rms[5] = dispRMS( calcLeftDisp, trueLeftDisp, depthDiscontMask );
badPxlsFractions.resize(ERROR_KINDS_COUNT);
badPxlsFractions[0] = badMatchPxlsFraction( calcLeftDisp, trueLeftDisp, borderedKnownMask, qualityEvalParams.badThresh );
badPxlsFractions[1] = badMatchPxlsFraction( calcLeftDisp, trueLeftDisp, nonOccludedMask, qualityEvalParams.badThresh );
badPxlsFractions[2] = badMatchPxlsFraction( calcLeftDisp, trueLeftDisp, occludedMask, qualityEvalParams.badThresh );
badPxlsFractions[3] = badMatchPxlsFraction( calcLeftDisp, trueLeftDisp, texturedMask, qualityEvalParams.badThresh );
badPxlsFractions[4] = badMatchPxlsFraction( calcLeftDisp, trueLeftDisp, texturelessMask, qualityEvalParams.badThresh );
badPxlsFractions[5] = badMatchPxlsFraction( calcLeftDisp, trueLeftDisp, depthDiscontMask, qualityEvalParams.badThresh );
}
int CV_StereoMatchingTest::processStereoMatchingResults( FileStorage& fs, int caseIdx, bool isWrite,
const Mat& leftImg, const Mat& rightImg,
const Mat& trueLeftDisp, const Mat& trueRightDisp,
const Mat& leftDisp, const Mat& rightDisp,
const QualityEvalParams& qualityEvalParams )
{
// rightDisp is not used in current test virsion
int code = cvtest::TS::OK;
assert( fs.isOpened() );
assert( trueLeftDisp.type() == CV_32FC1 );
assert( trueRightDisp.empty() || trueRightDisp.type() == CV_32FC1 );
assert( leftDisp.type() == CV_32FC1 && rightDisp.type() == CV_32FC1 );
// get masks for unknown ground truth disparity values
Mat leftUnknMask, rightUnknMask;
DatasetParams params = datasetsParams[caseDatasets[caseIdx]];
absdiff( trueLeftDisp, Scalar(params.dispUnknVal), leftUnknMask );
leftUnknMask = leftUnknMask < numeric_limits<float>::epsilon();
assert(leftUnknMask.type() == CV_8UC1);
if( !trueRightDisp.empty() )
{
absdiff( trueRightDisp, Scalar(params.dispUnknVal), rightUnknMask );
rightUnknMask = rightUnknMask < numeric_limits<float>::epsilon();
assert(leftUnknMask.type() == CV_8UC1);
}
// calculate errors
vector<float> rmss, badPxlsFractions;
calcErrors( leftImg, rightImg, trueLeftDisp, trueRightDisp, leftUnknMask, rightUnknMask,
leftDisp, rightDisp, rmss, badPxlsFractions, qualityEvalParams );
if( isWrite )
{
fs << caseNames[caseIdx] << "{";
//cvWriteComment( fs.fs, RMS_STR.c_str(), 0 );
writeErrors( RMS_STR, rmss, &fs );
//cvWriteComment( fs.fs, BAD_PXLS_FRACTION_STR.c_str(), 0 );
writeErrors( BAD_PXLS_FRACTION_STR, badPxlsFractions, &fs );
fs << "}"; // datasetName
}
else // compare
{
ts->printf( cvtest::TS::LOG, "\nquality of case named %s\n", caseNames[caseIdx].c_str() );
ts->printf( cvtest::TS::LOG, "%s\n", RMS_STR.c_str() );
writeErrors( RMS_STR, rmss );
ts->printf( cvtest::TS::LOG, "%s\n", BAD_PXLS_FRACTION_STR.c_str() );
writeErrors( BAD_PXLS_FRACTION_STR, badPxlsFractions );
FileNode fn = fs.getFirstTopLevelNode()[caseNames[caseIdx]];
vector<float> validRmss, validBadPxlsFractions;
readErrors( fn, RMS_STR, validRmss );
readErrors( fn, BAD_PXLS_FRACTION_STR, validBadPxlsFractions );
int tempCode = compareErrors( rmss, validRmss, rmsEps, RMS_STR );
code = tempCode==cvtest::TS::OK ? code : tempCode;
tempCode = compareErrors( badPxlsFractions, validBadPxlsFractions, fracEps, BAD_PXLS_FRACTION_STR );
code = tempCode==cvtest::TS::OK ? code : tempCode;
}
return code;
}
int CV_StereoMatchingTest::readDatasetsParams( FileStorage& fs )
{
if( !fs.isOpened() )
{
ts->printf( cvtest::TS::LOG, "datasetsParams can not be read " );
return cvtest::TS::FAIL_INVALID_TEST_DATA;
}
datasetsParams.clear();
FileNode fn = fs.getFirstTopLevelNode();
assert(fn.isSeq());
for( int i = 0; i < (int)fn.size(); i+=3 )
{
String _name = fn[i];
DatasetParams params;
String sf = fn[i+1]; params.dispScaleFactor = atoi(sf.c_str());
String uv = fn[i+2]; params.dispUnknVal = atoi(uv.c_str());
datasetsParams[_name] = params;
}
return cvtest::TS::OK;
}
int CV_StereoMatchingTest::readRunParams( FileStorage& fs )
{
if( !fs.isOpened() )
{
ts->printf( cvtest::TS::LOG, "runParams can not be read " );
return cvtest::TS::FAIL_INVALID_TEST_DATA;
}
caseNames.clear();;
caseDatasets.clear();
return cvtest::TS::OK;
}
void CV_StereoMatchingTest::writeErrors( const string& errName, const vector<float>& errors, FileStorage* fs )
{
assert( (int)errors.size() == ERROR_KINDS_COUNT );
vector<float>::const_iterator it = errors.begin();
if( fs )
for( int i = 0; i < ERROR_KINDS_COUNT; i++, ++it )
*fs << ERROR_PREFIXES[i] + errName << *it;
else
for( int i = 0; i < ERROR_KINDS_COUNT; i++, ++it )
ts->printf( cvtest::TS::LOG, "%s = %f\n", string(ERROR_PREFIXES[i]+errName).c_str(), *it );
}
void CV_StereoMatchingTest::readErrors( FileNode& fn, const string& errName, vector<float>& errors )
{
errors.resize( ERROR_KINDS_COUNT );
vector<float>::iterator it = errors.begin();
for( int i = 0; i < ERROR_KINDS_COUNT; i++, ++it )
fn[ERROR_PREFIXES[i]+errName] >> *it;
}
int CV_StereoMatchingTest::compareErrors( const vector<float>& calcErrors, const vector<float>& validErrors,
const vector<float>& eps, const string& errName )
{
assert( (int)calcErrors.size() == ERROR_KINDS_COUNT );
assert( (int)validErrors.size() == ERROR_KINDS_COUNT );
assert( (int)eps.size() == ERROR_KINDS_COUNT );
vector<float>::const_iterator calcIt = calcErrors.begin(),
validIt = validErrors.begin(),
epsIt = eps.begin();
bool ok = true;
for( int i = 0; i < ERROR_KINDS_COUNT; i++, ++calcIt, ++validIt, ++epsIt )
if( *calcIt - *validIt > *epsIt )
{
ts->printf( cvtest::TS::LOG, "bad accuracy of %s (valid=%f; calc=%f)\n", string(ERROR_PREFIXES[i]+errName).c_str(), *validIt, *calcIt );
ok = false;
}
return ok ? cvtest::TS::OK : cvtest::TS::FAIL_BAD_ACCURACY;
}
//----------------------------------- StereoBM test -----------------------------------------------------
class CV_StereoBMTest : public CV_StereoMatchingTest
{
public:
CV_StereoBMTest()
{
name = "stereobm";
fill(rmsEps.begin(), rmsEps.end(), 0.4f);
fill(fracEps.begin(), fracEps.end(), 0.022f);
}
protected:
struct RunParams
{
int ndisp;
int winSize;
};
vector<RunParams> caseRunParams;
virtual int readRunParams( FileStorage& fs )
{
int code = CV_StereoMatchingTest::readRunParams( fs );
FileNode fn = fs.getFirstTopLevelNode();
assert(fn.isSeq());
for( int i = 0; i < (int)fn.size(); i+=4 )
{
String caseName = fn[i], datasetName = fn[i+1];
RunParams params;
String ndisp = fn[i+2]; params.ndisp = atoi(ndisp.c_str());
String winSize = fn[i+3]; params.winSize = atoi(winSize.c_str());
caseNames.push_back( caseName );
caseDatasets.push_back( datasetName );
caseRunParams.push_back( params );
}
return code;
}
virtual int runStereoMatchingAlgorithm( const Mat& _leftImg, const Mat& _rightImg,
Mat& leftDisp, Mat& /*rightDisp*/, int caseIdx )
{
RunParams params = caseRunParams[caseIdx];
assert( params.ndisp%16 == 0 );
assert( _leftImg.type() == CV_8UC3 && _rightImg.type() == CV_8UC3 );
Mat leftImg; cvtColor( _leftImg, leftImg, COLOR_BGR2GRAY );
Mat rightImg; cvtColor( _rightImg, rightImg, COLOR_BGR2GRAY );
Ptr<StereoBM> bm = StereoBM::create( params.ndisp, params.winSize );
Mat tempDisp;
bm->compute( leftImg, rightImg, tempDisp );
tempDisp.convertTo(leftDisp, CV_32F, 1./StereoMatcher::DISP_SCALE);
return params.winSize/2;
}
};
//----------------------------------- StereoSGBM test -----------------------------------------------------
class CV_StereoSGBMTest : public CV_StereoMatchingTest
{
public:
CV_StereoSGBMTest()
{
name = "stereosgbm";
fill(rmsEps.begin(), rmsEps.end(), 0.25f);
fill(fracEps.begin(), fracEps.end(), 0.01f);
}
protected:
struct RunParams
{
int ndisp;
int winSize;
int mode;
};
vector<RunParams> caseRunParams;
virtual int readRunParams( FileStorage& fs )
{
int code = CV_StereoMatchingTest::readRunParams(fs);
FileNode fn = fs.getFirstTopLevelNode();
assert(fn.isSeq());
for( int i = 0; i < (int)fn.size(); i+=5 )
{
String caseName = fn[i], datasetName = fn[i+1];
RunParams params;
String ndisp = fn[i+2]; params.ndisp = atoi(ndisp.c_str());
String winSize = fn[i+3]; params.winSize = atoi(winSize.c_str());
String mode = fn[i+4]; params.mode = atoi(mode.c_str());
caseNames.push_back( caseName );
caseDatasets.push_back( datasetName );
caseRunParams.push_back( params );
}
return code;
}
virtual int runStereoMatchingAlgorithm( const Mat& leftImg, const Mat& rightImg,
Mat& leftDisp, Mat& /*rightDisp*/, int caseIdx )
{
RunParams params = caseRunParams[caseIdx];
assert( params.ndisp%16 == 0 );
Ptr<StereoSGBM> sgbm = StereoSGBM::create( 0, params.ndisp, params.winSize,
10*params.winSize*params.winSize,
40*params.winSize*params.winSize,
1, 63, 10, 100, 32, params.mode );
sgbm->compute( leftImg, rightImg, leftDisp );
CV_Assert( leftDisp.type() == CV_16SC1 );
leftDisp/=16;
return 0;
}
};
TEST(Calib3d_StereoBM, regression) { CV_StereoBMTest test; test.safe_run(); }
TEST(Calib3d_StereoSGBM, regression) { CV_StereoSGBMTest test; test.safe_run(); }
TEST(Calib3d_StereoSGBM_HH4, regression)
{
String path = cvtest::TS::ptr()->get_data_path() + "cv/stereomatching/datasets/teddy/";
Mat leftImg = imread(path + "im2.png", 0);
Mat rightImg = imread(path + "im6.png", 0);
Mat testData = imread(path + "disp2_hh4.png",-1);
Mat leftDisp;
Mat toCheck;
{
Ptr<StereoSGBM> sgbm = StereoSGBM::create( 0, 48, 3, 90, 360, 1, 63, 10, 100, 32, StereoSGBM::MODE_HH4);
sgbm->compute( leftImg, rightImg, leftDisp);
CV_Assert( leftDisp.type() == CV_16SC1 );
leftDisp.convertTo(toCheck, CV_16UC1,1,16);
}
Mat diff;
absdiff(toCheck, testData,diff);
CV_Assert( countNonZero(diff)==0);
}