mirror of
https://github.com/opencv/opencv.git
synced 2025-01-07 11:41:48 +08:00
415 lines
12 KiB
C++
415 lines
12 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of OpenCV Foundation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the OpenCV Foundation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
#include "precomp.hpp"
|
|
|
|
namespace cv
|
|
{
|
|
|
|
struct MinAreaState
|
|
{
|
|
int bottom;
|
|
int left;
|
|
float height;
|
|
float width;
|
|
float base_a;
|
|
float base_b;
|
|
};
|
|
|
|
enum { CALIPERS_MAXHEIGHT=0, CALIPERS_MINAREARECT=1, CALIPERS_MAXDIST=2 };
|
|
|
|
/*F///////////////////////////////////////////////////////////////////////////////////////
|
|
// Name: rotatingCalipers
|
|
// Purpose:
|
|
// Rotating calipers algorithm with some applications
|
|
//
|
|
// Context:
|
|
// Parameters:
|
|
// points - convex hull vertices ( any orientation )
|
|
// n - number of vertices
|
|
// mode - concrete application of algorithm
|
|
// can be CV_CALIPERS_MAXDIST or
|
|
// CV_CALIPERS_MINAREARECT
|
|
// left, bottom, right, top - indexes of extremal points
|
|
// out - output info.
|
|
// In case CV_CALIPERS_MAXDIST it points to float value -
|
|
// maximal height of polygon.
|
|
// In case CV_CALIPERS_MINAREARECT
|
|
// ((CvPoint2D32f*)out)[0] - corner
|
|
// ((CvPoint2D32f*)out)[1] - vector1
|
|
// ((CvPoint2D32f*)out)[0] - corner2
|
|
//
|
|
// ^
|
|
// |
|
|
// vector2 |
|
|
// |
|
|
// |____________\
|
|
// corner /
|
|
// vector1
|
|
//
|
|
// Returns:
|
|
// Notes:
|
|
//F*/
|
|
|
|
/* we will use usual cartesian coordinates */
|
|
static void rotatingCalipers( const Point2f* points, int n, int mode, float* out )
|
|
{
|
|
float minarea = FLT_MAX;
|
|
float max_dist = 0;
|
|
char buffer[32] = {};
|
|
int i, k;
|
|
AutoBuffer<float> abuf(n*3);
|
|
float* inv_vect_length = abuf;
|
|
Point2f* vect = (Point2f*)(inv_vect_length + n);
|
|
int left = 0, bottom = 0, right = 0, top = 0;
|
|
int seq[4] = { -1, -1, -1, -1 };
|
|
|
|
/* rotating calipers sides will always have coordinates
|
|
(a,b) (-b,a) (-a,-b) (b, -a)
|
|
*/
|
|
/* this is a first base bector (a,b) initialized by (1,0) */
|
|
float orientation = 0;
|
|
float base_a;
|
|
float base_b = 0;
|
|
|
|
float left_x, right_x, top_y, bottom_y;
|
|
Point2f pt0 = points[0];
|
|
|
|
left_x = right_x = pt0.x;
|
|
top_y = bottom_y = pt0.y;
|
|
|
|
for( i = 0; i < n; i++ )
|
|
{
|
|
double dx, dy;
|
|
|
|
if( pt0.x < left_x )
|
|
left_x = pt0.x, left = i;
|
|
|
|
if( pt0.x > right_x )
|
|
right_x = pt0.x, right = i;
|
|
|
|
if( pt0.y > top_y )
|
|
top_y = pt0.y, top = i;
|
|
|
|
if( pt0.y < bottom_y )
|
|
bottom_y = pt0.y, bottom = i;
|
|
|
|
Point2f pt = points[(i+1) & (i+1 < n ? -1 : 0)];
|
|
|
|
dx = pt.x - pt0.x;
|
|
dy = pt.y - pt0.y;
|
|
|
|
vect[i].x = (float)dx;
|
|
vect[i].y = (float)dy;
|
|
inv_vect_length[i] = (float)(1./std::sqrt(dx*dx + dy*dy));
|
|
|
|
pt0 = pt;
|
|
}
|
|
|
|
// find convex hull orientation
|
|
{
|
|
double ax = vect[n-1].x;
|
|
double ay = vect[n-1].y;
|
|
|
|
for( i = 0; i < n; i++ )
|
|
{
|
|
double bx = vect[i].x;
|
|
double by = vect[i].y;
|
|
|
|
double convexity = ax * by - ay * bx;
|
|
|
|
if( convexity != 0 )
|
|
{
|
|
orientation = (convexity > 0) ? 1.f : (-1.f);
|
|
break;
|
|
}
|
|
ax = bx;
|
|
ay = by;
|
|
}
|
|
CV_Assert( orientation != 0 );
|
|
}
|
|
base_a = orientation;
|
|
|
|
/*****************************************************************************************/
|
|
/* init calipers position */
|
|
seq[0] = bottom;
|
|
seq[1] = right;
|
|
seq[2] = top;
|
|
seq[3] = left;
|
|
/*****************************************************************************************/
|
|
/* Main loop - evaluate angles and rotate calipers */
|
|
|
|
/* all of edges will be checked while rotating calipers by 90 degrees */
|
|
for( k = 0; k < n; k++ )
|
|
{
|
|
/* sinus of minimal angle */
|
|
/*float sinus;*/
|
|
|
|
/* compute cosine of angle between calipers side and polygon edge */
|
|
/* dp - dot product */
|
|
float dp[4] = {
|
|
+base_a * vect[seq[0]].x + base_b * vect[seq[0]].y,
|
|
-base_b * vect[seq[1]].x + base_a * vect[seq[1]].y,
|
|
-base_a * vect[seq[2]].x - base_b * vect[seq[2]].y,
|
|
+base_b * vect[seq[3]].x - base_a * vect[seq[3]].y,
|
|
};
|
|
|
|
float maxcos = dp[0] * inv_vect_length[seq[0]];
|
|
|
|
/* number of calipers edges, that has minimal angle with edge */
|
|
int main_element = 0;
|
|
|
|
/* choose minimal angle */
|
|
for ( i = 1; i < 4; ++i )
|
|
{
|
|
float cosalpha = dp[i] * inv_vect_length[seq[i]];
|
|
if (cosalpha > maxcos)
|
|
{
|
|
main_element = i;
|
|
maxcos = cosalpha;
|
|
}
|
|
}
|
|
|
|
/*rotate calipers*/
|
|
{
|
|
//get next base
|
|
int pindex = seq[main_element];
|
|
float lead_x = vect[pindex].x*inv_vect_length[pindex];
|
|
float lead_y = vect[pindex].y*inv_vect_length[pindex];
|
|
switch( main_element )
|
|
{
|
|
case 0:
|
|
base_a = lead_x;
|
|
base_b = lead_y;
|
|
break;
|
|
case 1:
|
|
base_a = lead_y;
|
|
base_b = -lead_x;
|
|
break;
|
|
case 2:
|
|
base_a = -lead_x;
|
|
base_b = -lead_y;
|
|
break;
|
|
case 3:
|
|
base_a = -lead_y;
|
|
base_b = lead_x;
|
|
break;
|
|
default:
|
|
CV_Error(CV_StsError, "main_element should be 0, 1, 2 or 3");
|
|
}
|
|
}
|
|
/* change base point of main edge */
|
|
seq[main_element] += 1;
|
|
seq[main_element] = (seq[main_element] == n) ? 0 : seq[main_element];
|
|
|
|
switch (mode)
|
|
{
|
|
case CALIPERS_MAXHEIGHT:
|
|
{
|
|
/* now main element lies on edge alligned to calipers side */
|
|
|
|
/* find opposite element i.e. transform */
|
|
/* 0->2, 1->3, 2->0, 3->1 */
|
|
int opposite_el = main_element ^ 2;
|
|
|
|
float dx = points[seq[opposite_el]].x - points[seq[main_element]].x;
|
|
float dy = points[seq[opposite_el]].y - points[seq[main_element]].y;
|
|
float dist;
|
|
|
|
if( main_element & 1 )
|
|
dist = (float)fabs(dx * base_a + dy * base_b);
|
|
else
|
|
dist = (float)fabs(dx * (-base_b) + dy * base_a);
|
|
|
|
if( dist > max_dist )
|
|
max_dist = dist;
|
|
}
|
|
break;
|
|
case CALIPERS_MINAREARECT:
|
|
/* find area of rectangle */
|
|
{
|
|
float height;
|
|
float area;
|
|
|
|
/* find vector left-right */
|
|
float dx = points[seq[1]].x - points[seq[3]].x;
|
|
float dy = points[seq[1]].y - points[seq[3]].y;
|
|
|
|
/* dotproduct */
|
|
float width = dx * base_a + dy * base_b;
|
|
|
|
/* find vector left-right */
|
|
dx = points[seq[2]].x - points[seq[0]].x;
|
|
dy = points[seq[2]].y - points[seq[0]].y;
|
|
|
|
/* dotproduct */
|
|
height = -dx * base_b + dy * base_a;
|
|
|
|
area = width * height;
|
|
if( area <= minarea )
|
|
{
|
|
float *buf = (float *) buffer;
|
|
|
|
minarea = area;
|
|
/* leftist point */
|
|
((int *) buf)[0] = seq[3];
|
|
buf[1] = base_a;
|
|
buf[2] = width;
|
|
buf[3] = base_b;
|
|
buf[4] = height;
|
|
/* bottom point */
|
|
((int *) buf)[5] = seq[0];
|
|
buf[6] = area;
|
|
}
|
|
}
|
|
break;
|
|
} /*switch */
|
|
} /* for */
|
|
|
|
switch (mode)
|
|
{
|
|
case CALIPERS_MINAREARECT:
|
|
{
|
|
float *buf = (float *) buffer;
|
|
|
|
float A1 = buf[1];
|
|
float B1 = buf[3];
|
|
|
|
float A2 = -buf[3];
|
|
float B2 = buf[1];
|
|
|
|
float C1 = A1 * points[((int *) buf)[0]].x + points[((int *) buf)[0]].y * B1;
|
|
float C2 = A2 * points[((int *) buf)[5]].x + points[((int *) buf)[5]].y * B2;
|
|
|
|
float idet = 1.f / (A1 * B2 - A2 * B1);
|
|
|
|
float px = (C1 * B2 - C2 * B1) * idet;
|
|
float py = (A1 * C2 - A2 * C1) * idet;
|
|
|
|
out[0] = px;
|
|
out[1] = py;
|
|
|
|
out[2] = A1 * buf[2];
|
|
out[3] = B1 * buf[2];
|
|
|
|
out[4] = A2 * buf[4];
|
|
out[5] = B2 * buf[4];
|
|
}
|
|
break;
|
|
case CALIPERS_MAXHEIGHT:
|
|
{
|
|
out[0] = max_dist;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
cv::RotatedRect cv::minAreaRect( InputArray _points )
|
|
{
|
|
CV_INSTRUMENT_REGION()
|
|
|
|
Mat hull;
|
|
Point2f out[3];
|
|
RotatedRect box;
|
|
|
|
convexHull(_points, hull, true, true);
|
|
|
|
if( hull.depth() != CV_32F )
|
|
{
|
|
Mat temp;
|
|
hull.convertTo(temp, CV_32F);
|
|
hull = temp;
|
|
}
|
|
|
|
int n = hull.checkVector(2);
|
|
const Point2f* hpoints = hull.ptr<Point2f>();
|
|
|
|
if( n > 2 )
|
|
{
|
|
rotatingCalipers( hpoints, n, CALIPERS_MINAREARECT, (float*)out );
|
|
box.center.x = out[0].x + (out[1].x + out[2].x)*0.5f;
|
|
box.center.y = out[0].y + (out[1].y + out[2].y)*0.5f;
|
|
box.size.width = (float)std::sqrt((double)out[1].x*out[1].x + (double)out[1].y*out[1].y);
|
|
box.size.height = (float)std::sqrt((double)out[2].x*out[2].x + (double)out[2].y*out[2].y);
|
|
box.angle = (float)atan2( (double)out[1].y, (double)out[1].x );
|
|
}
|
|
else if( n == 2 )
|
|
{
|
|
box.center.x = (hpoints[0].x + hpoints[1].x)*0.5f;
|
|
box.center.y = (hpoints[0].y + hpoints[1].y)*0.5f;
|
|
double dx = hpoints[1].x - hpoints[0].x;
|
|
double dy = hpoints[1].y - hpoints[0].y;
|
|
box.size.width = (float)std::sqrt(dx*dx + dy*dy);
|
|
box.size.height = 0;
|
|
box.angle = (float)atan2( dy, dx );
|
|
}
|
|
else
|
|
{
|
|
if( n == 1 )
|
|
box.center = hpoints[0];
|
|
}
|
|
|
|
box.angle = (float)(box.angle*180/CV_PI);
|
|
return box;
|
|
}
|
|
|
|
|
|
CV_IMPL CvBox2D
|
|
cvMinAreaRect2( const CvArr* array, CvMemStorage* /*storage*/ )
|
|
{
|
|
cv::AutoBuffer<double> abuf;
|
|
cv::Mat points = cv::cvarrToMat(array, false, false, 0, &abuf);
|
|
|
|
cv::RotatedRect rr = cv::minAreaRect(points);
|
|
return (CvBox2D)rr;
|
|
}
|
|
|
|
void cv::boxPoints(cv::RotatedRect box, OutputArray _pts)
|
|
{
|
|
CV_INSTRUMENT_REGION()
|
|
|
|
_pts.create(4, 2, CV_32F);
|
|
Mat pts = _pts.getMat();
|
|
box.points(pts.ptr<Point2f>());
|
|
}
|