mirror of
https://github.com/opencv/opencv.git
synced 2025-01-05 18:05:31 +08:00
327 lines
12 KiB
C++
327 lines
12 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#ifndef __OPENCV_TEST_UTILITY_HPP__
|
|
#define __OPENCV_TEST_UTILITY_HPP__
|
|
#include "opencv2/core.hpp"
|
|
|
|
|
|
extern int LOOP_TIMES;
|
|
|
|
#define MWIDTH 256
|
|
#define MHEIGHT 256
|
|
|
|
#define MIN_VALUE 171
|
|
#define MAX_VALUE 357
|
|
|
|
namespace cvtest {
|
|
|
|
testing::AssertionResult assertKeyPointsEquals(const char* gold_expr, const char* actual_expr, std::vector<cv::KeyPoint>& gold, std::vector<cv::KeyPoint>& actual);
|
|
#define ASSERT_KEYPOINTS_EQ(gold, actual) EXPECT_PRED_FORMAT2(assertKeyPointsEquals, gold, actual)
|
|
|
|
void showDiff(const Mat& src, const Mat& gold, const Mat& actual, double eps, bool alwaysShow = false);
|
|
|
|
cv::ocl::oclMat createMat_ocl(cv::RNG& rng, Size size, int type, bool useRoi);
|
|
cv::ocl::oclMat loadMat_ocl(cv::RNG& rng, const Mat& m, bool useRoi);
|
|
|
|
// This function test if gpu_rst matches cpu_rst.
|
|
// If the two vectors are not equal, it will return the difference in vector size
|
|
// Else it will return (total diff of each cpu and gpu rects covered pixels)/(total cpu rects covered pixels)
|
|
// The smaller, the better matched
|
|
double checkRectSimilarity(cv::Size sz, std::vector<cv::Rect>& ob1, std::vector<cv::Rect>& ob2);
|
|
|
|
|
|
//! read image from testdata folder.
|
|
cv::Mat readImage(const std::string &fileName, int flags = cv::IMREAD_COLOR);
|
|
cv::Mat readImageType(const std::string &fname, int type);
|
|
|
|
double checkNorm(const cv::Mat &m);
|
|
double checkNorm(const cv::Mat &m1, const cv::Mat &m2);
|
|
double checkSimilarity(const cv::Mat &m1, const cv::Mat &m2);
|
|
|
|
inline double checkNormRelative(const Mat &m1, const Mat &m2)
|
|
{
|
|
return cv::norm(m1, m2, cv::NORM_INF) /
|
|
std::max((double)std::numeric_limits<float>::epsilon(),
|
|
(double)std::max(cv::norm(m1, cv::NORM_INF), norm(m2, cv::NORM_INF)));
|
|
}
|
|
|
|
#define EXPECT_MAT_NORM(mat, eps) \
|
|
{ \
|
|
EXPECT_LE(checkNorm(cv::Mat(mat)), eps) \
|
|
}
|
|
|
|
#define EXPECT_MAT_NEAR(mat1, mat2, eps) \
|
|
{ \
|
|
ASSERT_EQ(mat1.type(), mat2.type()); \
|
|
ASSERT_EQ(mat1.size(), mat2.size()); \
|
|
EXPECT_LE(checkNorm(cv::Mat(mat1), cv::Mat(mat2)), eps) \
|
|
<< cv::format("Size: %d x %d", mat1.cols, mat1.rows) << std::endl; \
|
|
}
|
|
|
|
#define EXPECT_MAT_NEAR_RELATIVE(mat1, mat2, eps) \
|
|
{ \
|
|
ASSERT_EQ(mat1.type(), mat2.type()); \
|
|
ASSERT_EQ(mat1.size(), mat2.size()); \
|
|
EXPECT_LE(checkNormRelative(cv::Mat(mat1), cv::Mat(mat2)), eps) \
|
|
<< cv::format("Size: %d x %d", mat1.cols, mat1.rows) << std::endl; \
|
|
}
|
|
|
|
#define EXPECT_MAT_SIMILAR(mat1, mat2, eps) \
|
|
{ \
|
|
ASSERT_EQ(mat1.type(), mat2.type()); \
|
|
ASSERT_EQ(mat1.size(), mat2.size()); \
|
|
EXPECT_LE(checkSimilarity(cv::Mat(mat1), cv::Mat(mat2)), eps); \
|
|
}
|
|
|
|
|
|
using perf::MatDepth;
|
|
using perf::MatType;
|
|
|
|
//! return vector with types from specified range.
|
|
std::vector<MatType> types(int depth_start, int depth_end, int cn_start, int cn_end);
|
|
|
|
//! return vector with all types (depth: CV_8U-CV_64F, channels: 1-4).
|
|
const std::vector<MatType> &all_types();
|
|
|
|
class Inverse
|
|
{
|
|
public:
|
|
inline Inverse(bool val = false) : val_(val) {}
|
|
|
|
inline operator bool() const
|
|
{
|
|
return val_;
|
|
}
|
|
|
|
private:
|
|
bool val_;
|
|
};
|
|
|
|
void PrintTo(const Inverse &useRoi, std::ostream *os);
|
|
|
|
#define OCL_RNG_SEED 123456
|
|
|
|
template <typename T>
|
|
struct TSTestWithParam : public ::testing::TestWithParam<T>
|
|
{
|
|
cv::RNG rng;
|
|
|
|
TSTestWithParam()
|
|
{
|
|
rng = cv::RNG(OCL_RNG_SEED);
|
|
}
|
|
|
|
int randomInt(int minVal, int maxVal)
|
|
{
|
|
return rng.uniform(minVal, maxVal);
|
|
}
|
|
|
|
double randomDouble(double minVal, double maxVal)
|
|
{
|
|
return rng.uniform(minVal, maxVal);
|
|
}
|
|
|
|
double randomDoubleLog(double minVal, double maxVal)
|
|
{
|
|
double logMin = log((double)minVal + 1);
|
|
double logMax = log((double)maxVal + 1);
|
|
double pow = rng.uniform(logMin, logMax);
|
|
double v = exp(pow) - 1;
|
|
CV_Assert(v >= minVal && (v < maxVal || (v == minVal && v == maxVal)));
|
|
return v;
|
|
}
|
|
|
|
Size randomSize(int minVal, int maxVal)
|
|
{
|
|
#if 1
|
|
return cv::Size((int)randomDoubleLog(minVal, maxVal), (int)randomDoubleLog(minVal, maxVal));
|
|
#else
|
|
return cv::Size(randomInt(minVal, maxVal), randomInt(minVal, maxVal));
|
|
#endif
|
|
}
|
|
|
|
Size randomSize(int minValX, int maxValX, int minValY, int maxValY)
|
|
{
|
|
#if 1
|
|
return cv::Size(randomDoubleLog(minValX, maxValX), randomDoubleLog(minValY, maxValY));
|
|
#else
|
|
return cv::Size(randomInt(minVal, maxVal), randomInt(minVal, maxVal));
|
|
#endif
|
|
}
|
|
|
|
Scalar randomScalar(double minVal, double maxVal)
|
|
{
|
|
return Scalar(randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal));
|
|
}
|
|
|
|
Mat randomMat(Size size, int type, double minVal, double maxVal, bool useRoi = false)
|
|
{
|
|
RNG dataRng(rng.next());
|
|
return cvtest::randomMat(dataRng, size, type, minVal, maxVal, useRoi);
|
|
}
|
|
|
|
struct Border
|
|
{
|
|
int top, bot, lef, rig;
|
|
};
|
|
|
|
Border randomBorder(int minValue = 0, int maxValue = MAX_VALUE)
|
|
{
|
|
Border border = {
|
|
(int)randomDoubleLog(minValue, maxValue),
|
|
(int)randomDoubleLog(minValue, maxValue),
|
|
(int)randomDoubleLog(minValue, maxValue),
|
|
(int)randomDoubleLog(minValue, maxValue)
|
|
};
|
|
return border;
|
|
}
|
|
|
|
void randomSubMat(Mat& whole, Mat& subMat, const Size& roiSize, const Border& border, int type, double minVal, double maxVal)
|
|
{
|
|
Size wholeSize = Size(roiSize.width + border.lef + border.rig, roiSize.height + border.top + border.bot);
|
|
whole = randomMat(wholeSize, type, minVal, maxVal, false);
|
|
subMat = whole(Rect(border.lef, border.top, roiSize.width, roiSize.height));
|
|
}
|
|
|
|
void generateOclMat(cv::ocl::oclMat& whole, cv::ocl::oclMat& subMat, const Mat& wholeMat, const Size& roiSize, const Border& border)
|
|
{
|
|
whole = wholeMat;
|
|
subMat = whole(Rect(border.lef, border.top, roiSize.width, roiSize.height));
|
|
}
|
|
};
|
|
|
|
#define PARAM_TEST_CASE(name, ...) struct name : public TSTestWithParam< std::tr1::tuple< __VA_ARGS__ > >
|
|
|
|
#define GET_PARAM(k) std::tr1::get< k >(GetParam())
|
|
|
|
#define ALL_TYPES testing::ValuesIn(all_types())
|
|
#define TYPES(depth_start, depth_end, cn_start, cn_end) testing::ValuesIn(types(depth_start, depth_end, cn_start, cn_end))
|
|
|
|
#define DIFFERENT_SIZES testing::Values(cv::Size(128, 128), cv::Size(113, 113), cv::Size(1300, 1300))
|
|
|
|
#define IMAGE_CHANNELS testing::Values(Channels(1), Channels(3), Channels(4))
|
|
#ifndef IMPLEMENT_PARAM_CLASS
|
|
#define IMPLEMENT_PARAM_CLASS(name, type) \
|
|
class name \
|
|
{ \
|
|
public: \
|
|
name ( type arg = type ()) : val_(arg) {} \
|
|
operator type () const {return val_;} \
|
|
private: \
|
|
type val_; \
|
|
}; \
|
|
inline void PrintTo( name param, std::ostream* os) \
|
|
{ \
|
|
*os << #name << "(" << testing::PrintToString(static_cast< type >(param)) << ")"; \
|
|
}
|
|
|
|
IMPLEMENT_PARAM_CLASS(Channels, int)
|
|
#endif // IMPLEMENT_PARAM_CLASS
|
|
|
|
} // namespace cvtest
|
|
|
|
enum {FLIP_BOTH = 0, FLIP_X = 1, FLIP_Y = -1};
|
|
CV_ENUM(FlipCode, FLIP_BOTH, FLIP_X, FLIP_Y)
|
|
|
|
CV_ENUM(CmpCode, CMP_EQ, CMP_GT, CMP_GE, CMP_LT, CMP_LE, CMP_NE)
|
|
CV_ENUM(NormCode, NORM_INF, NORM_L1, NORM_L2, NORM_TYPE_MASK, NORM_RELATIVE, NORM_MINMAX)
|
|
CV_ENUM(ReduceOp, REDUCE_SUM, REDUCE_AVG, REDUCE_MAX, REDUCE_MIN)
|
|
CV_ENUM(MorphOp, MORPH_OPEN, MORPH_CLOSE, MORPH_GRADIENT, MORPH_TOPHAT, MORPH_BLACKHAT)
|
|
CV_ENUM(ThreshOp, THRESH_BINARY, THRESH_BINARY_INV, THRESH_TRUNC, THRESH_TOZERO, THRESH_TOZERO_INV)
|
|
CV_ENUM(Interpolation, INTER_NEAREST, INTER_LINEAR, INTER_CUBIC, INTER_AREA)
|
|
CV_ENUM(Border, BORDER_REFLECT101, BORDER_REPLICATE, BORDER_CONSTANT, BORDER_REFLECT, BORDER_WRAP)
|
|
CV_ENUM(TemplateMethod, TM_SQDIFF, TM_SQDIFF_NORMED, TM_CCORR, TM_CCORR_NORMED, TM_CCOEFF, TM_CCOEFF_NORMED)
|
|
|
|
CV_FLAGS(GemmFlags, GEMM_1_T, GEMM_2_T, GEMM_3_T);
|
|
CV_FLAGS(WarpFlags, INTER_NEAREST, INTER_LINEAR, INTER_CUBIC, WARP_INVERSE_MAP)
|
|
CV_FLAGS(DftFlags, DFT_INVERSE, DFT_SCALE, DFT_ROWS, DFT_COMPLEX_OUTPUT, DFT_REAL_OUTPUT)
|
|
|
|
# define OCL_TEST_P(test_case_name, test_name) \
|
|
class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) : \
|
|
public test_case_name { \
|
|
public: \
|
|
GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() { } \
|
|
virtual void TestBody(); \
|
|
void OCLTestBody(); \
|
|
private: \
|
|
static int AddToRegistry() \
|
|
{ \
|
|
::testing::UnitTest::GetInstance()->parameterized_test_registry(). \
|
|
GetTestCasePatternHolder<test_case_name>(\
|
|
#test_case_name, __FILE__, __LINE__)->AddTestPattern(\
|
|
#test_case_name, \
|
|
#test_name, \
|
|
new ::testing::internal::TestMetaFactory< \
|
|
GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>()); \
|
|
return 0; \
|
|
} \
|
|
\
|
|
static int gtest_registering_dummy_; \
|
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(\
|
|
GTEST_TEST_CLASS_NAME_(test_case_name, test_name)); \
|
|
}; \
|
|
\
|
|
int GTEST_TEST_CLASS_NAME_(test_case_name, \
|
|
test_name)::gtest_registering_dummy_ = \
|
|
GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::AddToRegistry(); \
|
|
\
|
|
void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody() \
|
|
{ \
|
|
try \
|
|
{ \
|
|
OCLTestBody(); \
|
|
} \
|
|
catch (const cv::Exception & ex) \
|
|
{ \
|
|
if (ex.code == cv::Error::OpenCLDoubleNotSupported)\
|
|
std::cout << "Test skipped (selected device does not support double)" << std::endl; \
|
|
else if (ex.code == cv::Error::OpenCLNoAMDBlasFft) \
|
|
std::cout << "Test skipped (AMD Blas / Fft libraries are not available)" << std::endl; \
|
|
else \
|
|
throw; \
|
|
} \
|
|
} \
|
|
\
|
|
void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::OCLTestBody()
|
|
|
|
#endif // __OPENCV_TEST_UTILITY_HPP__
|