opencv/modules/contrib/src/openfabmap.cpp
Andrey Kamaev 2a6fb2867e Remove all using directives for STL namespace and members
Made all STL usages explicit to be able automatically find all usages of
particular class or function.
2013-02-25 15:04:17 +04:00

779 lines
27 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
// This file originates from the openFABMAP project:
// [http://code.google.com/p/openfabmap/]
//
// For published work which uses all or part of OpenFABMAP, please cite:
// [http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6224843]
//
// Original Algorithm by Mark Cummins and Paul Newman:
// [http://ijr.sagepub.com/content/27/6/647.short]
// [http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5613942]
// [http://ijr.sagepub.com/content/30/9/1100.abstract]
//
// License Agreement
//
// Copyright (C) 2012 Arren Glover [aj.glover@qut.edu.au] and
// Will Maddern [w.maddern@qut.edu.au], all rights reserved.
//
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencv2/contrib/openfabmap.hpp"
/*
Calculate the sum of two log likelihoods
*/
namespace cv {
namespace of2 {
static double logsumexp(double a, double b) {
return a > b ? std::log(1 + std::exp(b - a)) + a : std::log(1 + std::exp(a - b)) + b;
}
FabMap::FabMap(const Mat& _clTree, double _PzGe,
double _PzGNe, int _flags, int _numSamples) :
clTree(_clTree), PzGe(_PzGe), PzGNe(_PzGNe), flags(
_flags), numSamples(_numSamples) {
CV_Assert(flags & MEAN_FIELD || flags & SAMPLED);
CV_Assert(flags & NAIVE_BAYES || flags & CHOW_LIU);
if (flags & NAIVE_BAYES) {
PzGL = &FabMap::PzqGL;
} else {
PzGL = &FabMap::PzqGzpqL;
}
//check for a valid Chow-Liu tree
CV_Assert(clTree.type() == CV_64FC1);
cv::checkRange(clTree.row(0), false, NULL, 0, clTree.cols);
cv::checkRange(clTree.row(1), false, NULL, DBL_MIN, 1);
cv::checkRange(clTree.row(2), false, NULL, DBL_MIN, 1);
cv::checkRange(clTree.row(3), false, NULL, DBL_MIN, 1);
// TODO: Add default values for member variables
Pnew = 0.9;
sFactor = 0.99;
mBias = 0.5;
}
FabMap::~FabMap() {
}
const std::vector<cv::Mat>& FabMap::getTrainingImgDescriptors() const {
return trainingImgDescriptors;
}
const std::vector<cv::Mat>& FabMap::getTestImgDescriptors() const {
return testImgDescriptors;
}
void FabMap::addTraining(const Mat& queryImgDescriptor) {
CV_Assert(!queryImgDescriptor.empty());
std::vector<Mat> queryImgDescriptors;
for (int i = 0; i < queryImgDescriptor.rows; i++) {
queryImgDescriptors.push_back(queryImgDescriptor.row(i));
}
addTraining(queryImgDescriptors);
}
void FabMap::addTraining(const std::vector<Mat>& queryImgDescriptors) {
for (size_t i = 0; i < queryImgDescriptors.size(); i++) {
CV_Assert(!queryImgDescriptors[i].empty());
CV_Assert(queryImgDescriptors[i].rows == 1);
CV_Assert(queryImgDescriptors[i].cols == clTree.cols);
CV_Assert(queryImgDescriptors[i].type() == CV_32F);
trainingImgDescriptors.push_back(queryImgDescriptors[i]);
}
}
void FabMap::add(const cv::Mat& queryImgDescriptor) {
CV_Assert(!queryImgDescriptor.empty());
std::vector<Mat> queryImgDescriptors;
for (int i = 0; i < queryImgDescriptor.rows; i++) {
queryImgDescriptors.push_back(queryImgDescriptor.row(i));
}
add(queryImgDescriptors);
}
void FabMap::add(const std::vector<cv::Mat>& queryImgDescriptors) {
for (size_t i = 0; i < queryImgDescriptors.size(); i++) {
CV_Assert(!queryImgDescriptors[i].empty());
CV_Assert(queryImgDescriptors[i].rows == 1);
CV_Assert(queryImgDescriptors[i].cols == clTree.cols);
CV_Assert(queryImgDescriptors[i].type() == CV_32F);
testImgDescriptors.push_back(queryImgDescriptors[i]);
}
}
void FabMap::compare(const Mat& queryImgDescriptor,
std::vector<IMatch>& matches, bool addQuery,
const Mat& mask) {
CV_Assert(!queryImgDescriptor.empty());
std::vector<Mat> queryImgDescriptors;
for (int i = 0; i < queryImgDescriptor.rows; i++) {
queryImgDescriptors.push_back(queryImgDescriptor.row(i));
}
compare(queryImgDescriptors,matches,addQuery,mask);
}
void FabMap::compare(const Mat& queryImgDescriptor,
const Mat& testImgDescriptor, std::vector<IMatch>& matches,
const Mat& mask) {
CV_Assert(!queryImgDescriptor.empty());
std::vector<Mat> queryImgDescriptors;
for (int i = 0; i < queryImgDescriptor.rows; i++) {
queryImgDescriptors.push_back(queryImgDescriptor.row(i));
}
CV_Assert(!testImgDescriptor.empty());
std::vector<Mat> _testImgDescriptors;
for (int i = 0; i < testImgDescriptor.rows; i++) {
_testImgDescriptors.push_back(testImgDescriptor.row(i));
}
compare(queryImgDescriptors,_testImgDescriptors,matches,mask);
}
void FabMap::compare(const Mat& queryImgDescriptor,
const std::vector<Mat>& _testImgDescriptors,
std::vector<IMatch>& matches, const Mat& mask) {
CV_Assert(!queryImgDescriptor.empty());
std::vector<Mat> queryImgDescriptors;
for (int i = 0; i < queryImgDescriptor.rows; i++) {
queryImgDescriptors.push_back(queryImgDescriptor.row(i));
}
compare(queryImgDescriptors,_testImgDescriptors,matches,mask);
}
void FabMap::compare(const std::vector<Mat>& queryImgDescriptors,
std::vector<IMatch>& matches, bool addQuery, const Mat& /*mask*/) {
// TODO: add first query if empty (is this necessary)
for (size_t i = 0; i < queryImgDescriptors.size(); i++) {
CV_Assert(!queryImgDescriptors[i].empty());
CV_Assert(queryImgDescriptors[i].rows == 1);
CV_Assert(queryImgDescriptors[i].cols == clTree.cols);
CV_Assert(queryImgDescriptors[i].type() == CV_32F);
// TODO: add mask
compareImgDescriptor(queryImgDescriptors[i],
(int)i, testImgDescriptors, matches);
if (addQuery)
add(queryImgDescriptors[i]);
}
}
void FabMap::compare(const std::vector<Mat>& queryImgDescriptors,
const std::vector<Mat>& _testImgDescriptors,
std::vector<IMatch>& matches, const Mat& /*mask*/) {
CV_Assert(!(flags & MOTION_MODEL));
for (size_t i = 0; i < _testImgDescriptors.size(); i++) {
CV_Assert(!_testImgDescriptors[i].empty());
CV_Assert(_testImgDescriptors[i].rows == 1);
CV_Assert(_testImgDescriptors[i].cols == clTree.cols);
CV_Assert(_testImgDescriptors[i].type() == CV_32F);
}
for (size_t i = 0; i < queryImgDescriptors.size(); i++) {
CV_Assert(!queryImgDescriptors[i].empty());
CV_Assert(queryImgDescriptors[i].rows == 1);
CV_Assert(queryImgDescriptors[i].cols == clTree.cols);
CV_Assert(queryImgDescriptors[i].type() == CV_32F);
// TODO: add mask
compareImgDescriptor(queryImgDescriptors[i],
(int)i, _testImgDescriptors, matches);
}
}
void FabMap::compareImgDescriptor(const Mat& queryImgDescriptor,
int queryIndex, const std::vector<Mat>& _testImgDescriptors,
std::vector<IMatch>& matches) {
std::vector<IMatch> queryMatches;
queryMatches.push_back(IMatch(queryIndex,-1,
getNewPlaceLikelihood(queryImgDescriptor),0));
getLikelihoods(queryImgDescriptor,_testImgDescriptors,queryMatches);
normaliseDistribution(queryMatches);
for (size_t j = 1; j < queryMatches.size(); j++) {
queryMatches[j].queryIdx = queryIndex;
}
matches.insert(matches.end(), queryMatches.begin(), queryMatches.end());
}
void FabMap::getLikelihoods(const Mat& /*queryImgDescriptor*/,
const std::vector<Mat>& /*testImgDescriptors*/, std::vector<IMatch>& /*matches*/) {
}
double FabMap::getNewPlaceLikelihood(const Mat& queryImgDescriptor) {
if (flags & MEAN_FIELD) {
double logP = 0;
bool zq, zpq;
if(flags & NAIVE_BAYES) {
for (int q = 0; q < clTree.cols; q++) {
zq = queryImgDescriptor.at<float>(0,q) > 0;
logP += std::log(Pzq(q, false) * PzqGeq(zq, false) +
Pzq(q, true) * PzqGeq(zq, true));
}
} else {
for (int q = 0; q < clTree.cols; q++) {
zq = queryImgDescriptor.at<float>(0,q) > 0;
zpq = queryImgDescriptor.at<float>(0,pq(q)) > 0;
double alpha, beta, p;
alpha = Pzq(q, zq) * PzqGeq(!zq, false) * PzqGzpq(q, !zq, zpq);
beta = Pzq(q, !zq) * PzqGeq(zq, false) * PzqGzpq(q, zq, zpq);
p = Pzq(q, false) * beta / (alpha + beta);
alpha = Pzq(q, zq) * PzqGeq(!zq, true) * PzqGzpq(q, !zq, zpq);
beta = Pzq(q, !zq) * PzqGeq(zq, true) * PzqGzpq(q, zq, zpq);
p += Pzq(q, true) * beta / (alpha + beta);
logP += std::log(p);
}
}
return logP;
}
if (flags & SAMPLED) {
CV_Assert(!trainingImgDescriptors.empty());
CV_Assert(numSamples > 0);
std::vector<Mat> sampledImgDescriptors;
// TODO: this method can result in the same sample being added
// multiple times. Is this desired?
for (int i = 0; i < numSamples; i++) {
int index = rand() % trainingImgDescriptors.size();
sampledImgDescriptors.push_back(trainingImgDescriptors[index]);
}
std::vector<IMatch> matches;
getLikelihoods(queryImgDescriptor,sampledImgDescriptors,matches);
double averageLogLikelihood = -DBL_MAX + matches.front().likelihood + 1;
for (int i = 0; i < numSamples; i++) {
averageLogLikelihood =
logsumexp(matches[i].likelihood, averageLogLikelihood);
}
return averageLogLikelihood - std::log((double)numSamples);
}
return 0;
}
void FabMap::normaliseDistribution(std::vector<IMatch>& matches) {
CV_Assert(!matches.empty());
if (flags & MOTION_MODEL) {
matches[0].match = matches[0].likelihood + std::log(Pnew);
if (priorMatches.size() > 2) {
matches[1].match = matches[1].likelihood;
matches[1].match += std::log(
(2 * (1-mBias) * priorMatches[1].match +
priorMatches[1].match +
2 * mBias * priorMatches[2].match) / 3);
for (size_t i = 2; i < priorMatches.size()-1; i++) {
matches[i].match = matches[i].likelihood;
matches[i].match += std::log(
(2 * (1-mBias) * priorMatches[i-1].match +
priorMatches[i].match +
2 * mBias * priorMatches[i+1].match)/3);
}
matches[priorMatches.size()-1].match =
matches[priorMatches.size()-1].likelihood;
matches[priorMatches.size()-1].match += std::log(
(2 * (1-mBias) * priorMatches[priorMatches.size()-2].match +
priorMatches[priorMatches.size()-1].match +
2 * mBias * priorMatches[priorMatches.size()-1].match)/3);
for(size_t i = priorMatches.size(); i < matches.size(); i++) {
matches[i].match = matches[i].likelihood;
}
} else {
for(size_t i = 1; i < matches.size(); i++) {
matches[i].match = matches[i].likelihood;
}
}
double logsum = -DBL_MAX + matches.front().match + 1;
//calculate the normalising constant
for (size_t i = 0; i < matches.size(); i++) {
logsum = logsumexp(logsum, matches[i].match);
}
//normalise
for (size_t i = 0; i < matches.size(); i++) {
matches[i].match = std::exp(matches[i].match - logsum);
}
//smooth final probabilities
for (size_t i = 0; i < matches.size(); i++) {
matches[i].match = sFactor*matches[i].match +
(1 - sFactor)/matches.size();
}
//update our location priors
priorMatches = matches;
} else {
double logsum = -DBL_MAX + matches.front().likelihood + 1;
for (size_t i = 0; i < matches.size(); i++) {
logsum = logsumexp(logsum, matches[i].likelihood);
}
for (size_t i = 0; i < matches.size(); i++) {
matches[i].match = std::exp(matches[i].likelihood - logsum);
}
for (size_t i = 0; i < matches.size(); i++) {
matches[i].match = sFactor*matches[i].match +
(1 - sFactor)/matches.size();
}
}
}
int FabMap::pq(int q) {
return (int)clTree.at<double>(0,q);
}
double FabMap::Pzq(int q, bool zq) {
return (zq) ? clTree.at<double>(1,q) : 1 - clTree.at<double>(1,q);
}
double FabMap::PzqGzpq(int q, bool zq, bool zpq) {
if (zpq) {
return (zq) ? clTree.at<double>(2,q) : 1 - clTree.at<double>(2,q);
} else {
return (zq) ? clTree.at<double>(3,q) : 1 - clTree.at<double>(3,q);
}
}
double FabMap::PzqGeq(bool zq, bool eq) {
if (eq) {
return (zq) ? PzGe : 1 - PzGe;
} else {
return (zq) ? PzGNe : 1 - PzGNe;
}
}
double FabMap::PeqGL(int q, bool Lzq, bool eq) {
double alpha, beta;
alpha = PzqGeq(Lzq, true) * Pzq(q, true);
beta = PzqGeq(Lzq, false) * Pzq(q, false);
if (eq) {
return alpha / (alpha + beta);
} else {
return 1 - (alpha / (alpha + beta));
}
}
double FabMap::PzqGL(int q, bool zq, bool /*zpq*/, bool Lzq) {
return PeqGL(q, Lzq, false) * PzqGeq(zq, false) +
PeqGL(q, Lzq, true) * PzqGeq(zq, true);
}
double FabMap::PzqGzpqL(int q, bool zq, bool zpq, bool Lzq) {
double p;
double alpha, beta;
alpha = Pzq(q, zq) * PzqGeq(!zq, false) * PzqGzpq(q, !zq, zpq);
beta = Pzq(q, !zq) * PzqGeq( zq, false) * PzqGzpq(q, zq, zpq);
p = PeqGL(q, Lzq, false) * beta / (alpha + beta);
alpha = Pzq(q, zq) * PzqGeq(!zq, true) * PzqGzpq(q, !zq, zpq);
beta = Pzq(q, !zq) * PzqGeq( zq, true) * PzqGzpq(q, zq, zpq);
p += PeqGL(q, Lzq, true) * beta / (alpha + beta);
return p;
}
FabMap1::FabMap1(const Mat& _clTree, double _PzGe, double _PzGNe, int _flags,
int _numSamples) : FabMap(_clTree, _PzGe, _PzGNe, _flags,
_numSamples) {
}
FabMap1::~FabMap1() {
}
void FabMap1::getLikelihoods(const Mat& queryImgDescriptor,
const std::vector<Mat>& testImageDescriptors, std::vector<IMatch>& matches) {
for (size_t i = 0; i < testImageDescriptors.size(); i++) {
bool zq, zpq, Lzq;
double logP = 0;
for (int q = 0; q < clTree.cols; q++) {
zq = queryImgDescriptor.at<float>(0,q) > 0;
zpq = queryImgDescriptor.at<float>(0,pq(q)) > 0;
Lzq = testImageDescriptors[i].at<float>(0,q) > 0;
logP += std::log((this->*PzGL)(q, zq, zpq, Lzq));
}
matches.push_back(IMatch(0,(int)i,logP,0));
}
}
FabMapLUT::FabMapLUT(const Mat& _clTree, double _PzGe, double _PzGNe,
int _flags, int _numSamples, int _precision) :
FabMap(_clTree, _PzGe, _PzGNe, _flags, _numSamples), precision(_precision) {
int nWords = clTree.cols;
double precFactor = (double)std::pow(10.0, precision);
table = new int[nWords][8];
for (int q = 0; q < nWords; q++) {
for (unsigned char i = 0; i < 8; i++) {
bool Lzq = (bool) ((i >> 2) & 0x01);
bool zq = (bool) ((i >> 1) & 0x01);
bool zpq = (bool) (i & 1);
table[q][i] = -(int)(std::log((this->*PzGL)(q, zq, zpq, Lzq))
* precFactor);
}
}
}
FabMapLUT::~FabMapLUT() {
delete[] table;
}
void FabMapLUT::getLikelihoods(const Mat& queryImgDescriptor,
const std::vector<Mat>& testImageDescriptors, std::vector<IMatch>& matches) {
double precFactor = (double)std::pow(10.0, -precision);
for (size_t i = 0; i < testImageDescriptors.size(); i++) {
unsigned long long int logP = 0;
for (int q = 0; q < clTree.cols; q++) {
logP += table[q][(queryImgDescriptor.at<float>(0,pq(q)) > 0) +
((queryImgDescriptor.at<float>(0, q) > 0) << 1) +
((testImageDescriptors[i].at<float>(0,q) > 0) << 2)];
}
matches.push_back(IMatch(0,(int)i,-precFactor*(double)logP,0));
}
}
FabMapFBO::FabMapFBO(const Mat& _clTree, double _PzGe, double _PzGNe,
int _flags, int _numSamples, double _rejectionThreshold,
double _PsGd, int _bisectionStart, int _bisectionIts) :
FabMap(_clTree, _PzGe, _PzGNe, _flags, _numSamples), PsGd(_PsGd),
rejectionThreshold(_rejectionThreshold), bisectionStart(_bisectionStart),
bisectionIts(_bisectionIts) {
}
FabMapFBO::~FabMapFBO() {
}
void FabMapFBO::getLikelihoods(const Mat& queryImgDescriptor,
const std::vector<Mat>& testImageDescriptors, std::vector<IMatch>& matches) {
std::multiset<WordStats> wordData;
setWordStatistics(queryImgDescriptor, wordData);
std::vector<int> matchIndices;
std::vector<IMatch> queryMatches;
for (size_t i = 0; i < testImageDescriptors.size(); i++) {
queryMatches.push_back(IMatch(0,(int)i,0,0));
matchIndices.push_back((int)i);
}
double currBest = -DBL_MAX;
double bailedOut = DBL_MAX;
for (std::multiset<WordStats>::iterator wordIter = wordData.begin();
wordIter != wordData.end(); wordIter++) {
bool zq = queryImgDescriptor.at<float>(0,wordIter->q) > 0;
bool zpq = queryImgDescriptor.at<float>(0,pq(wordIter->q)) > 0;
currBest = -DBL_MAX;
for (size_t i = 0; i < matchIndices.size(); i++) {
bool Lzq =
testImageDescriptors[matchIndices[i]].at<float>(0,wordIter->q) > 0;
queryMatches[matchIndices[i]].likelihood +=
std::log((this->*PzGL)(wordIter->q,zq,zpq,Lzq));
currBest =
std::max(queryMatches[matchIndices[i]].likelihood, currBest);
}
if (matchIndices.size() == 1)
continue;
double delta = std::max(limitbisection(wordIter->V, wordIter->M),
-std::log(rejectionThreshold));
std::vector<int>::iterator matchIter = matchIndices.begin();
while (matchIter != matchIndices.end()) {
if (currBest - queryMatches[*matchIter].likelihood > delta) {
queryMatches[*matchIter].likelihood = bailedOut;
matchIter = matchIndices.erase(matchIter);
} else {
matchIter++;
}
}
}
for (size_t i = 0; i < queryMatches.size(); i++) {
if (queryMatches[i].likelihood == bailedOut) {
queryMatches[i].likelihood = currBest + std::log(rejectionThreshold);
}
}
matches.insert(matches.end(), queryMatches.begin(), queryMatches.end());
}
void FabMapFBO::setWordStatistics(const Mat& queryImgDescriptor,
std::multiset<WordStats>& wordData) {
//words are sorted according to information = -ln(P(zq|zpq))
//in non-log format this is lowest probability first
for (int q = 0; q < clTree.cols; q++) {
wordData.insert(WordStats(q,PzqGzpq(q,
queryImgDescriptor.at<float>(0,q) > 0,
queryImgDescriptor.at<float>(0,pq(q)) > 0)));
}
double d = 0, V = 0, M = 0;
bool zq, zpq;
for (std::multiset<WordStats>::reverse_iterator wordIter =
wordData.rbegin();
wordIter != wordData.rend(); wordIter++) {
zq = queryImgDescriptor.at<float>(0,wordIter->q) > 0;
zpq = queryImgDescriptor.at<float>(0,pq(wordIter->q)) > 0;
d = std::log((this->*PzGL)(wordIter->q, zq, zpq, true)) -
std::log((this->*PzGL)(wordIter->q, zq, zpq, false));
V += std::pow(d, 2.0) * 2 *
(Pzq(wordIter->q, true) - std::pow(Pzq(wordIter->q, true), 2.0));
M = std::max(M, fabs(d));
wordIter->V = V;
wordIter->M = M;
}
}
double FabMapFBO::limitbisection(double v, double m) {
double midpoint, left_val, mid_val;
double left = 0, right = bisectionStart;
left_val = bennettInequality(v, m, left) - PsGd;
for(int i = 0; i < bisectionIts; i++) {
midpoint = (left + right)*0.5;
mid_val = bennettInequality(v, m, midpoint)- PsGd;
if(left_val * mid_val > 0) {
left = midpoint;
left_val = mid_val;
} else {
right = midpoint;
}
}
return (right + left) * 0.5;
}
double FabMapFBO::bennettInequality(double v, double m, double delta) {
double DMonV = delta * m / v;
double f_delta = std::log(DMonV + std::sqrt(std::pow(DMonV, 2.0) + 1));
return std::exp((v / std::pow(m, 2.0))*(cosh(f_delta) - 1 - DMonV * f_delta));
}
bool FabMapFBO::compInfo(const WordStats& first, const WordStats& second) {
return first.info < second.info;
}
FabMap2::FabMap2(const Mat& _clTree, double _PzGe, double _PzGNe,
int _flags) :
FabMap(_clTree, _PzGe, _PzGNe, _flags) {
CV_Assert(flags & SAMPLED);
children.resize(clTree.cols);
for (int q = 0; q < clTree.cols; q++) {
d1.push_back(std::log((this->*PzGL)(q, false, false, true) /
(this->*PzGL)(q, false, false, false)));
d2.push_back(std::log((this->*PzGL)(q, false, true, true) /
(this->*PzGL)(q, false, true, false)) - d1[q]);
d3.push_back(std::log((this->*PzGL)(q, true, false, true) /
(this->*PzGL)(q, true, false, false))- d1[q]);
d4.push_back(std::log((this->*PzGL)(q, true, true, true) /
(this->*PzGL)(q, true, true, false))- d1[q]);
children[pq(q)].push_back(q);
}
}
FabMap2::~FabMap2() {
}
void FabMap2::addTraining(const std::vector<Mat>& queryImgDescriptors) {
for (size_t i = 0; i < queryImgDescriptors.size(); i++) {
CV_Assert(!queryImgDescriptors[i].empty());
CV_Assert(queryImgDescriptors[i].rows == 1);
CV_Assert(queryImgDescriptors[i].cols == clTree.cols);
CV_Assert(queryImgDescriptors[i].type() == CV_32F);
trainingImgDescriptors.push_back(queryImgDescriptors[i]);
addToIndex(queryImgDescriptors[i], trainingDefaults, trainingInvertedMap);
}
}
void FabMap2::add(const std::vector<Mat>& queryImgDescriptors) {
for (size_t i = 0; i < queryImgDescriptors.size(); i++) {
CV_Assert(!queryImgDescriptors[i].empty());
CV_Assert(queryImgDescriptors[i].rows == 1);
CV_Assert(queryImgDescriptors[i].cols == clTree.cols);
CV_Assert(queryImgDescriptors[i].type() == CV_32F);
testImgDescriptors.push_back(queryImgDescriptors[i]);
addToIndex(queryImgDescriptors[i], testDefaults, testInvertedMap);
}
}
void FabMap2::getLikelihoods(const Mat& queryImgDescriptor,
const std::vector<Mat>& testImageDescriptors, std::vector<IMatch>& matches) {
if (&testImageDescriptors == &testImgDescriptors) {
getIndexLikelihoods(queryImgDescriptor, testDefaults, testInvertedMap,
matches);
} else {
CV_Assert(!(flags & MOTION_MODEL));
std::vector<double> defaults;
std::map<int, std::vector<int> > invertedMap;
for (size_t i = 0; i < testImageDescriptors.size(); i++) {
addToIndex(testImageDescriptors[i],defaults,invertedMap);
}
getIndexLikelihoods(queryImgDescriptor, defaults, invertedMap, matches);
}
}
double FabMap2::getNewPlaceLikelihood(const Mat& queryImgDescriptor) {
CV_Assert(!trainingImgDescriptors.empty());
std::vector<IMatch> matches;
getIndexLikelihoods(queryImgDescriptor, trainingDefaults,
trainingInvertedMap, matches);
double averageLogLikelihood = -DBL_MAX + matches.front().likelihood + 1;
for (size_t i = 0; i < matches.size(); i++) {
averageLogLikelihood =
logsumexp(matches[i].likelihood, averageLogLikelihood);
}
return averageLogLikelihood - std::log((double)trainingDefaults.size());
}
void FabMap2::addToIndex(const Mat& queryImgDescriptor,
std::vector<double>& defaults,
std::map<int, std::vector<int> >& invertedMap) {
defaults.push_back(0);
for (int q = 0; q < clTree.cols; q++) {
if (queryImgDescriptor.at<float>(0,q) > 0) {
defaults.back() += d1[q];
invertedMap[q].push_back((int)defaults.size()-1);
}
}
}
void FabMap2::getIndexLikelihoods(const Mat& queryImgDescriptor,
std::vector<double>& defaults,
std::map<int, std::vector<int> >& invertedMap,
std::vector<IMatch>& matches) {
std::vector<int>::iterator LwithI, child;
std::vector<double> likelihoods = defaults;
for (int q = 0; q < clTree.cols; q++) {
if (queryImgDescriptor.at<float>(0,q) > 0) {
for (LwithI = invertedMap[q].begin();
LwithI != invertedMap[q].end(); LwithI++) {
if (queryImgDescriptor.at<float>(0,pq(q)) > 0) {
likelihoods[*LwithI] += d4[q];
} else {
likelihoods[*LwithI] += d3[q];
}
}
for (child = children[q].begin(); child != children[q].end();
child++) {
if (queryImgDescriptor.at<float>(0,*child) == 0) {
for (LwithI = invertedMap[*child].begin();
LwithI != invertedMap[*child].end(); LwithI++) {
likelihoods[*LwithI] += d2[*child];
}
}
}
}
}
for (size_t i = 0; i < likelihoods.size(); i++) {
matches.push_back(IMatch(0,(int)i,likelihoods[i],0));
}
}
}
}