mirror of
https://github.com/opencv/opencv.git
synced 2024-11-25 19:50:38 +08:00
965 lines
34 KiB
C++
965 lines
34 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
// Copyright (C) 2018, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
#include "../precomp.hpp"
|
|
|
|
#ifdef HAVE_PROTOBUF
|
|
|
|
#include "../graph_simplifier.hpp"
|
|
#include "tf_graph_simplifier.hpp"
|
|
#include <queue>
|
|
|
|
namespace cv { namespace dnn {
|
|
CV__DNN_EXPERIMENTAL_NS_BEGIN
|
|
|
|
using ::google::protobuf::RepeatedField;
|
|
using ::google::protobuf::MapPair;
|
|
|
|
class TFNodeWrapper : public ImportNodeWrapper
|
|
{
|
|
public:
|
|
TFNodeWrapper(tensorflow::NodeDef* _node) : node(_node) {}
|
|
|
|
virtual int getNumInputs() const CV_OVERRIDE
|
|
{
|
|
return node->input_size();
|
|
}
|
|
|
|
virtual std::string getInputName(int idx) const CV_OVERRIDE
|
|
{
|
|
return node->input(idx);
|
|
}
|
|
|
|
virtual std::string getType() const CV_OVERRIDE
|
|
{
|
|
return node->op();
|
|
}
|
|
|
|
virtual void setType(const std::string& type) CV_OVERRIDE
|
|
{
|
|
node->set_op(type);
|
|
}
|
|
|
|
virtual void setInputNames(const std::vector<std::string>& inputs) CV_OVERRIDE
|
|
{
|
|
node->clear_input();
|
|
for (int i = 0; i < inputs.size(); ++i)
|
|
node->add_input(inputs[i]);
|
|
}
|
|
|
|
tensorflow::NodeDef* node;
|
|
};
|
|
|
|
class TFGraphWrapper : public ImportGraphWrapper
|
|
{
|
|
public:
|
|
TFGraphWrapper(tensorflow::GraphDef& _net) : net(_net) {}
|
|
|
|
virtual Ptr<ImportNodeWrapper> getNode(int idx) const CV_OVERRIDE
|
|
{
|
|
return makePtr<TFNodeWrapper>(net.mutable_node(idx));
|
|
}
|
|
|
|
virtual int getNumNodes() const CV_OVERRIDE
|
|
{
|
|
return net.node_size();
|
|
}
|
|
|
|
virtual std::string getNodeName(int idx) const CV_OVERRIDE
|
|
{
|
|
return net.node(idx).name();
|
|
}
|
|
|
|
virtual void removeNode(int idx) CV_OVERRIDE
|
|
{
|
|
net.mutable_node()->DeleteSubrange(idx, 1);
|
|
}
|
|
|
|
tensorflow::GraphDef& net;
|
|
};
|
|
|
|
class TFSubgraph : public Subgraph
|
|
{
|
|
virtual void finalize(const Ptr<ImportGraphWrapper>& netWrapper,
|
|
const Ptr<ImportNodeWrapper>& fusedNodeWrapper,
|
|
std::vector<Ptr<ImportNodeWrapper> >& inputs) CV_OVERRIDE
|
|
{
|
|
std::vector<tensorflow::NodeDef*> inputNodes(inputs.size());
|
|
for (int i = 0; i < inputs.size(); ++i)
|
|
inputNodes[i] = inputs[i].dynamicCast<TFNodeWrapper>()->node;
|
|
finalize(netWrapper.dynamicCast<TFGraphWrapper>()->net,
|
|
fusedNodeWrapper.dynamicCast<TFNodeWrapper>()->node, inputNodes);
|
|
}
|
|
|
|
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef* fusedNode,
|
|
std::vector<tensorflow::NodeDef*>& inputNodes) {}
|
|
};
|
|
|
|
class BatchNormSubgraph : public TFSubgraph
|
|
{
|
|
public:
|
|
BatchNormSubgraph()
|
|
{
|
|
int input = addNodeToMatch("");
|
|
int epsilon = addNodeToMatch("Const");
|
|
int moving_variance = addNodeToMatch("Const");
|
|
int moving_mean = addNodeToMatch("Const");
|
|
int beta = addNodeToMatch("Const");
|
|
int gamma = addNodeToMatch("Const");
|
|
int add = addNodeToMatch("Add", moving_variance, epsilon);
|
|
int rsqrt = addNodeToMatch("Rsqrt", add);
|
|
int mul = addNodeToMatch("Mul", rsqrt, gamma);
|
|
int mul_1 = addNodeToMatch("Mul", input, mul);
|
|
int mul_2 = addNodeToMatch("Mul", moving_mean, mul);
|
|
int sub = addNodeToMatch("Sub", beta, mul_2);
|
|
addNodeToMatch("Add", mul_1, sub);
|
|
|
|
setFusedNode("FusedBatchNorm", input, gamma, beta, moving_mean, moving_variance, epsilon);
|
|
}
|
|
|
|
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef* fusedNode,
|
|
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE
|
|
{
|
|
Mat epsMat = getTensorContent(inputNodes.back()->attr().at("value").tensor());
|
|
CV_CheckEQ(epsMat.total(), (size_t)1, ""); CV_CheckTypeEQ(epsMat.type(), CV_32FC1, "");
|
|
|
|
fusedNode->mutable_input()->RemoveLast();
|
|
fusedNode->clear_attr();
|
|
tensorflow::AttrValue epsilon;
|
|
epsilon.set_f(epsMat.at<float>(0));
|
|
fusedNode->mutable_attr()->insert(MapPair<std::string, tensorflow::AttrValue>("epsilon", epsilon));
|
|
}
|
|
};
|
|
|
|
class BatchNormNoGammaSubgraph : public TFSubgraph
|
|
{
|
|
public:
|
|
BatchNormNoGammaSubgraph()
|
|
{
|
|
int input = addNodeToMatch("");
|
|
int epsilon = addNodeToMatch("Const");
|
|
int moving_variance = addNodeToMatch("Const");
|
|
int moving_mean = addNodeToMatch("Const");
|
|
int beta = addNodeToMatch("Const");
|
|
int add = addNodeToMatch("Add", moving_variance, epsilon);
|
|
int rsqrt = addNodeToMatch("Rsqrt", add);
|
|
int mul = addNodeToMatch("Mul", input, rsqrt);
|
|
int mul_1 = addNodeToMatch("Mul", moving_mean, rsqrt);
|
|
int sub = addNodeToMatch("Sub", beta, mul_1);
|
|
addNodeToMatch("Add", mul, sub);
|
|
|
|
// There is a fake reference to beta that will be replaced to a new gamma tensor.
|
|
setFusedNode("FusedBatchNorm", input, beta, beta, moving_mean, moving_variance, epsilon);
|
|
}
|
|
|
|
virtual void finalize(tensorflow::GraphDef& net, tensorflow::NodeDef* fusedNode,
|
|
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE
|
|
{
|
|
Mat epsMat = getTensorContent(inputNodes.back()->attr().at("value").tensor());
|
|
CV_CheckEQ(epsMat.total(), (size_t)1, ""); CV_CheckTypeEQ(epsMat.type(), CV_32FC1, "");
|
|
|
|
fusedNode->mutable_input()->RemoveLast();
|
|
fusedNode->clear_attr();
|
|
tensorflow::AttrValue epsilon;
|
|
epsilon.set_f(epsMat.at<float>(0));
|
|
fusedNode->mutable_attr()->insert(MapPair<std::string, tensorflow::AttrValue>("epsilon", epsilon));
|
|
|
|
tensorflow::NodeDef* gamma = net.add_node();
|
|
gamma->set_op("Const");
|
|
gamma->set_name(fusedNode->name() + "/gamma");
|
|
// Just put a single value to recognize this node as Const.
|
|
gamma->mutable_attr()->insert(MapPair<std::string, tensorflow::AttrValue>("value", epsilon));
|
|
fusedNode->set_input(1, gamma->name());
|
|
}
|
|
};
|
|
|
|
// tf.contrib.layers.flatten
|
|
class FlattenSubgraph : public Subgraph
|
|
{
|
|
public:
|
|
FlattenSubgraph()
|
|
{
|
|
int input = addNodeToMatch("");
|
|
int shape = addNodeToMatch("Const");
|
|
int stack = addNodeToMatch("Const");
|
|
int stack_1 = addNodeToMatch("Const");
|
|
int stack_2 = addNodeToMatch("Const");
|
|
int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2);
|
|
int shape_pack = addNodeToMatch("Const");
|
|
int pack = addNodeToMatch("Pack", strided_slice, shape_pack);
|
|
addNodeToMatch("Reshape", input, pack);
|
|
|
|
setFusedNode("Flatten", input);
|
|
}
|
|
};
|
|
|
|
// tf.contrib.layers.flatten in case of unknown batch size
|
|
class FlattenShapeSubgraph : public Subgraph
|
|
{
|
|
public:
|
|
FlattenShapeSubgraph()
|
|
{
|
|
int input = addNodeToMatch("");
|
|
int shape = addNodeToMatch("Shape", input);
|
|
int stack = addNodeToMatch("Const");
|
|
int stack_1 = addNodeToMatch("Const");
|
|
int stack_2 = addNodeToMatch("Const");
|
|
int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2);
|
|
int shape_pack = addNodeToMatch("Const");
|
|
int pack = addNodeToMatch("Pack", strided_slice, shape_pack);
|
|
addNodeToMatch("Reshape", input, pack);
|
|
|
|
setFusedNode("Flatten", input);
|
|
}
|
|
};
|
|
|
|
// K.layers.Softmax
|
|
class SoftMaxKerasSubgraph : public Subgraph
|
|
{
|
|
public:
|
|
SoftMaxKerasSubgraph()
|
|
{
|
|
int input = addNodeToMatch("");
|
|
int maxReductionIndices = addNodeToMatch("Const");
|
|
int smMax = addNodeToMatch("Max", input, maxReductionIndices);
|
|
int smSub = addNodeToMatch("Sub", input, smMax);
|
|
int smExp = addNodeToMatch("Exp", smSub);
|
|
int sumReductionIndices = addNodeToMatch("Const");
|
|
int smSum = addNodeToMatch("Sum", smExp, sumReductionIndices);
|
|
addNodeToMatch("RealDiv", smExp, smSum);
|
|
|
|
setFusedNode("Softmax", input);
|
|
}
|
|
};
|
|
|
|
class ReLU6KerasSubgraph : public Subgraph
|
|
{
|
|
public:
|
|
ReLU6KerasSubgraph()
|
|
{
|
|
int input = addNodeToMatch("");
|
|
int relu = addNodeToMatch("Relu", input);
|
|
int maxValue = addNodeToMatch("Const");
|
|
int clipValue = addNodeToMatch("Const");
|
|
int minimum = addNodeToMatch("Minimum", relu, maxValue);
|
|
addNodeToMatch("Maximum", minimum, clipValue);
|
|
|
|
setFusedNode("Relu6", input);
|
|
}
|
|
|
|
virtual bool match(const Ptr<ImportGraphWrapper>& net, int nodeId,
|
|
std::vector<int>& matchedNodesIds,
|
|
std::vector<int>& targetNodesIds) CV_OVERRIDE
|
|
{
|
|
if (!Subgraph::match(net, nodeId, matchedNodesIds, targetNodesIds))
|
|
return false;
|
|
tensorflow::NodeDef* node = net->getNode(matchedNodesIds.front() + 1).dynamicCast<TFNodeWrapper>()->node;
|
|
Mat maxValue = getTensorContent(node->attr().at("value").tensor());
|
|
return maxValue.type() == CV_32FC1 && maxValue.total() == 1 && maxValue.at<float>(0) == 6;
|
|
}
|
|
};
|
|
|
|
// Keras' reshape stores output shape in separate Const nodes by one value.
|
|
// Need to merge them into a single Const node.
|
|
class ReshapeKerasSubgraph : public TFSubgraph
|
|
{
|
|
public:
|
|
ReshapeKerasSubgraph(int _numOutDims) : numOutDims(_numOutDims)
|
|
{
|
|
int input = addNodeToMatch("");
|
|
int shape = addNodeToMatch("Shape", input);
|
|
int stack = addNodeToMatch("Const");
|
|
int stack_1 = addNodeToMatch("Const");
|
|
int stack_2 = addNodeToMatch("Const");
|
|
int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2);
|
|
|
|
std::vector<int> ids(1 + numOutDims);
|
|
ids[0] = strided_slice;
|
|
for (int i = 0; i < numOutDims; ++i)
|
|
ids[1 + i] = addNodeToMatch("Const");
|
|
int pack = addNodeToMatch("Pack", ids);
|
|
addNodeToMatch("Reshape", input, pack);
|
|
|
|
ids[0] = input;
|
|
setFusedNode("Reshape", ids);
|
|
}
|
|
|
|
virtual bool match(const Ptr<ImportGraphWrapper>& net, int nodeId,
|
|
std::vector<int>& matchedNodesIds,
|
|
std::vector<int>& targetNodesIds) CV_OVERRIDE
|
|
{
|
|
Ptr<ImportNodeWrapper> node = net->getNode(nodeId);
|
|
if (node->getNumInputs() == 0)
|
|
return false;
|
|
|
|
inpName = node->getInputName(0);
|
|
return Subgraph::match(net, nodeId, matchedNodesIds, targetNodesIds);
|
|
}
|
|
|
|
|
|
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef* fusedNode,
|
|
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE
|
|
{
|
|
std::vector<int> shape(numOutDims + 1); // batch size in Keras is implicit.
|
|
shape[0] = -1;
|
|
for (int i = 0; i < numOutDims; ++i)
|
|
{
|
|
shape[1 + i] = inputNodes[1 + i]->attr().at("value").tensor().int_val(0);
|
|
}
|
|
tensorflow::TensorProto* shapeTensor = inputNodes[1]->mutable_attr()->at("value").mutable_tensor();
|
|
fusedNode->mutable_input()->DeleteSubrange(2, numOutDims - 1);
|
|
fusedNode->set_input(0, inpName);
|
|
|
|
shapeTensor->clear_int_val();
|
|
for (int i = 0; i < shape.size(); ++i)
|
|
{
|
|
shapeTensor->add_int_val(shape[i]);
|
|
}
|
|
}
|
|
|
|
private:
|
|
int numOutDims;
|
|
std::string inpName;
|
|
};
|
|
|
|
class L2NormalizeSubgraph : public Subgraph
|
|
{
|
|
public:
|
|
L2NormalizeSubgraph()
|
|
{
|
|
int input = addNodeToMatch("");
|
|
int square = addNodeToMatch("Square", input);
|
|
int reductionIndices = addNodeToMatch("Const");
|
|
int sum = addNodeToMatch("Sum", square, reductionIndices);
|
|
int y = addNodeToMatch("Const");
|
|
int maximum = addNodeToMatch("Maximum", sum, y);
|
|
int rsqrt = addNodeToMatch("Rsqrt", maximum);
|
|
addNodeToMatch("Mul", input, rsqrt);
|
|
setFusedNode("L2Normalize", input, reductionIndices);
|
|
}
|
|
};
|
|
|
|
class DeconvolutionValidKerasSubgraph : public TFSubgraph
|
|
{
|
|
public:
|
|
DeconvolutionValidKerasSubgraph()
|
|
{
|
|
int input = addNodeToMatch("");
|
|
int shape = addNodeToMatch("Shape", input);
|
|
int kernel = addNodeToMatch("Const");
|
|
|
|
int stack = addNodeToMatch("Const");
|
|
int stack_1 = addNodeToMatch("Const");
|
|
int stack_2 = addNodeToMatch("Const");
|
|
int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2);
|
|
|
|
stack = addNodeToMatch("Const");
|
|
stack_1 = addNodeToMatch("Const");
|
|
stack_2 = addNodeToMatch("Const");
|
|
int strided_slice_1 = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2);
|
|
|
|
stack = addNodeToMatch("Const");
|
|
stack_1 = addNodeToMatch("Const");
|
|
stack_2 = addNodeToMatch("Const");
|
|
int strided_slice_2 = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2);
|
|
|
|
int mul = addNodeToMatch("Mul", strided_slice_1, addNodeToMatch("Const"));
|
|
int add = addNodeToMatch("Add", mul, addNodeToMatch("Const"));
|
|
|
|
int mul_1 = addNodeToMatch("Mul", strided_slice_2, addNodeToMatch("Const"));
|
|
int add_1 = addNodeToMatch("Add", mul_1, addNodeToMatch("Const"));
|
|
int pack = addNodeToMatch("Pack", strided_slice, add, add_1, addNodeToMatch("Const"));
|
|
addNodeToMatch("Conv2DBackpropInput", pack, kernel, input);
|
|
// Put any unused Const op to the first input.
|
|
setFusedNode("Conv2DBackpropInput", stack, kernel, input);
|
|
}
|
|
|
|
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef* fusedNode,
|
|
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE
|
|
{
|
|
// Disable adjusted paddings (see Conv2DBackpropInput layer at tf_importer.cpp)
|
|
// adj_w = (outW - (pad == "SAME") ? 1 : kernelW) % strideX;
|
|
// adj_h = (outH - (pad == "SAME") ? 1 : kernelH) % strideY;
|
|
// Where outH and outW are 1st and 2nd dimensions (NHWC) or 2nd and third (NCHW).
|
|
std::string padMode = fusedNode->attr().at("padding").s();
|
|
CV_Assert(padMode == "VALID");
|
|
|
|
const tensorflow::TensorShapeProto& kernelShape =
|
|
inputNodes[1]->mutable_attr()->at("value").tensor().tensor_shape();
|
|
|
|
CV_Assert(kernelShape.dim_size() == 4);
|
|
const int kernelHeight = kernelShape.dim(0).size();
|
|
const int kernelWidth = kernelShape.dim(1).size();
|
|
|
|
tensorflow::TensorProto* outShape = inputNodes[0]->mutable_attr()->at("value").mutable_tensor();
|
|
outShape->clear_int_val();
|
|
outShape->add_int_val(-1);
|
|
outShape->add_int_val(kernelHeight);
|
|
outShape->add_int_val(kernelWidth);
|
|
outShape->add_int_val(-1);
|
|
}
|
|
};
|
|
|
|
class DeconvolutionSameKerasSubgraph : public TFSubgraph
|
|
{
|
|
public:
|
|
DeconvolutionSameKerasSubgraph()
|
|
{
|
|
int input = addNodeToMatch("");
|
|
int shape = addNodeToMatch("Shape", input);
|
|
int kernel = addNodeToMatch("Const");
|
|
|
|
int stack = addNodeToMatch("Const");
|
|
int stack_1 = addNodeToMatch("Const");
|
|
int stack_2 = addNodeToMatch("Const");
|
|
int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2);
|
|
|
|
stack = addNodeToMatch("Const");
|
|
stack_1 = addNodeToMatch("Const");
|
|
stack_2 = addNodeToMatch("Const");
|
|
int strided_slice_1 = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2);
|
|
|
|
stack = addNodeToMatch("Const");
|
|
stack_1 = addNodeToMatch("Const");
|
|
stack_2 = addNodeToMatch("Const");
|
|
int strided_slice_2 = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2);
|
|
|
|
int mul = addNodeToMatch("Mul", strided_slice_1, addNodeToMatch("Const"));
|
|
|
|
int mul_1 = addNodeToMatch("Mul", strided_slice_2, addNodeToMatch("Const"));
|
|
int pack = addNodeToMatch("Pack", strided_slice, mul, mul_1, addNodeToMatch("Const"));
|
|
addNodeToMatch("Conv2DBackpropInput", pack, kernel, input);
|
|
// Put any unused Const op to the first input.
|
|
setFusedNode("Conv2DBackpropInput", stack, kernel, input);
|
|
}
|
|
|
|
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef* fusedNode,
|
|
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE
|
|
{
|
|
// Disable adjusted paddings (see Conv2DBackpropInput layer at tf_importer.cpp)
|
|
// adj_w = (outW - (pad == "SAME") ? 1 : kernelW) % strideX;
|
|
// adj_h = (outH - (pad == "SAME") ? 1 : kernelH) % strideY;
|
|
// Where outH and outW are 1st and 2nd dimensions (NHWC) or 2nd and third (NCHW).
|
|
std::string padMode = fusedNode->attr().at("padding").s();
|
|
CV_Assert(padMode == "SAME");
|
|
|
|
const tensorflow::AttrValue_ListValue& strides = fusedNode->attr().at("strides").list();
|
|
CV_Assert(strides.i_size() == 4);
|
|
|
|
const int strideY = strides.i(1);
|
|
const int strideX = strides.i(2);
|
|
|
|
tensorflow::TensorProto* outShape = inputNodes[0]->mutable_attr()->at("value").mutable_tensor();
|
|
outShape->clear_int_val();
|
|
outShape->add_int_val(-1);
|
|
outShape->add_int_val(strideY);
|
|
outShape->add_int_val(strideX);
|
|
outShape->add_int_val(-1);
|
|
}
|
|
};
|
|
|
|
// In case of resizing by factor.
|
|
class ResizeBilinearSubgraph : public Subgraph
|
|
{
|
|
public:
|
|
ResizeBilinearSubgraph()
|
|
{
|
|
int input = addNodeToMatch("");
|
|
|
|
int shape = addNodeToMatch("Shape", input);
|
|
int stack = addNodeToMatch("Const");
|
|
int stack_1 = addNodeToMatch("Const");
|
|
int stack_2 = addNodeToMatch("Const");
|
|
int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2);
|
|
int factorY = addNodeToMatch("Const");
|
|
int mul = addNodeToMatch("Mul", strided_slice, factorY);
|
|
|
|
shape = addNodeToMatch("Shape", input);
|
|
stack = addNodeToMatch("Const");
|
|
stack_1 = addNodeToMatch("Const");
|
|
stack_2 = addNodeToMatch("Const");
|
|
strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2);
|
|
int factorX = addNodeToMatch("Const");
|
|
int mul_1 = addNodeToMatch("Mul", strided_slice, factorX);
|
|
|
|
int pack = addNodeToMatch("Pack", mul, mul_1);
|
|
|
|
addNodeToMatch("ResizeBilinear", input, pack);
|
|
setFusedNode("ResizeBilinear", input, factorY, factorX);
|
|
}
|
|
};
|
|
|
|
// In case of resizing by factor.
|
|
class UpsamplingKerasSubgraph : public TFSubgraph
|
|
{
|
|
public:
|
|
UpsamplingKerasSubgraph(const std::string& type)
|
|
{
|
|
int input = addNodeToMatch("");
|
|
int shape = addNodeToMatch("Shape", input);
|
|
int stack = addNodeToMatch("Const");
|
|
int stack_1 = addNodeToMatch("Const");
|
|
int stack_2 = addNodeToMatch("Const");
|
|
int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2);
|
|
int factors = addNodeToMatch("Const");
|
|
int mul = addNodeToMatch("Mul", strided_slice, factors);
|
|
addNodeToMatch(type, input, mul);
|
|
setFusedNode(type, input, factors);
|
|
}
|
|
|
|
virtual void finalize(tensorflow::GraphDef& net, tensorflow::NodeDef* fusedNode,
|
|
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE
|
|
{
|
|
Mat factorsMat = getTensorContent(inputNodes[1]->attr().at("value").tensor());
|
|
CV_CheckEQ(factorsMat.total(), (size_t)2, ""); CV_CheckTypeEQ(factorsMat.type(), CV_32SC1, "");
|
|
|
|
// Height scale factor
|
|
tensorflow::TensorProto* factorY = inputNodes[1]->mutable_attr()->at("value").mutable_tensor();
|
|
factorY->clear_int_val();
|
|
factorY->clear_tensor_content();
|
|
factorY->add_int_val(factorsMat.at<int>(0, 0));
|
|
|
|
// Width scale factor.
|
|
tensorflow::NodeDef* factorXNode = net.add_node();
|
|
factorXNode->set_op("Const");
|
|
factorXNode->set_name(fusedNode->name() + "/factor_y");
|
|
|
|
tensorflow::AttrValue factorX;
|
|
factorX.mutable_tensor()->set_dtype(tensorflow::DT_INT32);
|
|
factorX.mutable_tensor()->add_int_val(factorsMat.at<int>(0, 1));
|
|
factorXNode->mutable_attr()->insert(MapPair<std::string, tensorflow::AttrValue>("value", factorX));
|
|
|
|
fusedNode->add_input(factorXNode->name());
|
|
}
|
|
};
|
|
|
|
class ReshapeAsShapeSubgraph : public Subgraph
|
|
{
|
|
public:
|
|
ReshapeAsShapeSubgraph()
|
|
{
|
|
int input = addNodeToMatch("");
|
|
int shapeSrc = addNodeToMatch("");
|
|
int shape = addNodeToMatch("Shape", shapeSrc);
|
|
addNodeToMatch("Reshape", input, shape);
|
|
setFusedNode("Reshape", input, shapeSrc);
|
|
}
|
|
};
|
|
|
|
class SoftMaxSlimSubgraph : public Subgraph
|
|
{
|
|
public:
|
|
SoftMaxSlimSubgraph()
|
|
{
|
|
int input = addNodeToMatch("");
|
|
int shape = addNodeToMatch("Const");
|
|
int shapeOp = addNodeToMatch("Shape", input);
|
|
int reshape = addNodeToMatch("Reshape", input, shape);
|
|
int softmax = addNodeToMatch("Softmax", reshape);
|
|
addNodeToMatch("Reshape", softmax, shapeOp);
|
|
setFusedNode("Softmax", input);
|
|
}
|
|
};
|
|
|
|
class SoftMaxSlimV2Subgraph : public Subgraph
|
|
{
|
|
public:
|
|
SoftMaxSlimV2Subgraph()
|
|
{
|
|
int input = addNodeToMatch("");
|
|
int shape = addNodeToMatch("Shape", input);
|
|
int shape_2 = addNodeToMatch("Shape", input);
|
|
int rank = addNodeToMatch("Const");
|
|
int y = addNodeToMatch("Const");
|
|
int sub = addNodeToMatch("Sub", rank, y);
|
|
int begin = addNodeToMatch("Pack", sub);
|
|
int size = addNodeToMatch("Const");
|
|
int slice = addNodeToMatch("Slice", shape, begin, size);
|
|
int values = addNodeToMatch("Const");
|
|
int axis = addNodeToMatch("Const");
|
|
int concat = addNodeToMatch("ConcatV2", values, slice, axis);
|
|
int reshape = addNodeToMatch("Reshape", input, concat);
|
|
int softmax = addNodeToMatch("Softmax", reshape);
|
|
addNodeToMatch("Reshape", softmax, shape_2);
|
|
setFusedNode("Softmax", input);
|
|
}
|
|
};
|
|
|
|
class KerasMVNSubgraph : public TFSubgraph
|
|
{
|
|
public:
|
|
KerasMVNSubgraph()
|
|
{
|
|
int input = addNodeToMatch("");
|
|
int mean = addNodeToMatch("Mean", input, addNodeToMatch("Const"));
|
|
int grad = addNodeToMatch("StopGradient", mean);
|
|
int diff = addNodeToMatch("SquaredDifference", input, grad);
|
|
int var = addNodeToMatch("Mean", diff, addNodeToMatch("Const"));
|
|
int sub = addNodeToMatch("Sub", input, mean);
|
|
int add_y = addNodeToMatch("Const");
|
|
int add = addNodeToMatch("Add", var, add_y);
|
|
int pow_y = addNodeToMatch("Const");
|
|
int powNode = addNodeToMatch("Pow", add, pow_y);
|
|
addNodeToMatch("RealDiv", sub, powNode);
|
|
setFusedNode("MVN", input, add_y);
|
|
}
|
|
|
|
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef* fusedNode,
|
|
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE
|
|
{
|
|
tensorflow::AttrValue eps;
|
|
|
|
Mat epsMat = getTensorContent(inputNodes[1]->attr().at("value").tensor());
|
|
CV_CheckEQ(epsMat.total(), (size_t)1, "");
|
|
CV_CheckTypeEQ(epsMat.type(), CV_32FC1, "");
|
|
eps.set_f(epsMat.at<float>(0));
|
|
fusedNode->mutable_attr()->insert(MapPair<std::string, tensorflow::AttrValue>("eps", eps));
|
|
|
|
fusedNode->mutable_input()->RemoveLast();
|
|
}
|
|
};
|
|
|
|
void simplifySubgraphs(tensorflow::GraphDef& net)
|
|
{
|
|
std::vector<Ptr<Subgraph> > subgraphs;
|
|
subgraphs.push_back(Ptr<Subgraph>(new BatchNormSubgraph()));
|
|
subgraphs.push_back(Ptr<Subgraph>(new BatchNormNoGammaSubgraph()));
|
|
subgraphs.push_back(Ptr<Subgraph>(new FlattenSubgraph()));
|
|
subgraphs.push_back(Ptr<Subgraph>(new FlattenShapeSubgraph()));
|
|
subgraphs.push_back(Ptr<Subgraph>(new SoftMaxKerasSubgraph()));
|
|
subgraphs.push_back(Ptr<Subgraph>(new ReLU6KerasSubgraph()));
|
|
subgraphs.push_back(Ptr<Subgraph>(new ReshapeKerasSubgraph(3)));
|
|
subgraphs.push_back(Ptr<Subgraph>(new L2NormalizeSubgraph()));
|
|
subgraphs.push_back(Ptr<Subgraph>(new DeconvolutionValidKerasSubgraph()));
|
|
subgraphs.push_back(Ptr<Subgraph>(new DeconvolutionSameKerasSubgraph()));
|
|
subgraphs.push_back(Ptr<Subgraph>(new ResizeBilinearSubgraph()));
|
|
subgraphs.push_back(Ptr<Subgraph>(new UpsamplingKerasSubgraph("ResizeNearestNeighbor")));
|
|
subgraphs.push_back(Ptr<Subgraph>(new UpsamplingKerasSubgraph("ResizeBilinear")));
|
|
subgraphs.push_back(Ptr<Subgraph>(new SoftMaxSlimSubgraph()));
|
|
subgraphs.push_back(Ptr<Subgraph>(new SoftMaxSlimV2Subgraph()));
|
|
subgraphs.push_back(Ptr<Subgraph>(new ReshapeAsShapeSubgraph()));
|
|
subgraphs.push_back(Ptr<Subgraph>(new KerasMVNSubgraph()));
|
|
|
|
simplifySubgraphs(Ptr<ImportGraphWrapper>(new TFGraphWrapper(net)), subgraphs);
|
|
}
|
|
|
|
void RemoveIdentityOps(tensorflow::GraphDef& net)
|
|
{
|
|
typedef std::map<String, String> IdentityOpsMap;
|
|
IdentityOpsMap identity_ops;
|
|
|
|
std::vector<int> identity_ops_idx;
|
|
|
|
int layersCount = net.node_size();
|
|
for (int li = 0; li < layersCount; li++)
|
|
{
|
|
const tensorflow::NodeDef &layer = net.node(li);
|
|
String type = layer.op();
|
|
|
|
if (type == "Identity" || type == "Dropout" || type == "PlaceholderWithDefault") {
|
|
identity_ops_idx.push_back(li);
|
|
identity_ops[layer.name()] = layer.input(0);
|
|
}
|
|
}
|
|
|
|
for (int li = 0; li < layersCount; li++)
|
|
{
|
|
tensorflow::NodeDef* layer = net.mutable_node(li);
|
|
for (int input_id = 0; input_id < layer->input_size(); input_id++) {
|
|
String input_op_name = layer->input(input_id);
|
|
input_op_name = input_op_name.substr(input_op_name.find('^') + 1,
|
|
input_op_name.rfind(':'));
|
|
IdentityOpsMap::iterator it = identity_ops.find(input_op_name);
|
|
|
|
if (it != identity_ops.end()) {
|
|
layer->set_input(input_id, it->second);
|
|
}
|
|
}
|
|
}
|
|
|
|
std::sort(identity_ops_idx.begin(), identity_ops_idx.end());
|
|
|
|
int removed_nodes = 0;
|
|
for(size_t i = 0; i < identity_ops_idx.size(); i++) {
|
|
int start_id = identity_ops_idx[i] - removed_nodes;
|
|
net.mutable_node()->DeleteSubrange(start_id, 1);
|
|
removed_nodes++;
|
|
}
|
|
}
|
|
|
|
Mat getTensorContent(const tensorflow::TensorProto &tensor, bool copy)
|
|
{
|
|
const std::string& content = tensor.tensor_content();
|
|
Mat m;
|
|
switch (tensor.dtype())
|
|
{
|
|
case tensorflow::DT_FLOAT:
|
|
{
|
|
if (!content.empty())
|
|
m = Mat(1, content.size() / sizeof(float), CV_32FC1, (void*)content.c_str());
|
|
else
|
|
{
|
|
const RepeatedField<float>& field = tensor.float_val();
|
|
CV_Assert(!field.empty());
|
|
m = Mat(1, field.size(), CV_32FC1, (void*)field.data());
|
|
}
|
|
break;
|
|
}
|
|
case tensorflow::DT_DOUBLE:
|
|
{
|
|
if (!content.empty())
|
|
m = Mat(1, content.size() / sizeof(double), CV_64FC1, (void*)content.c_str());
|
|
else
|
|
{
|
|
const RepeatedField<double>& field = tensor.double_val();
|
|
CV_Assert(!field.empty());
|
|
m = Mat(1, field.size(), CV_64FC1, (void*)field.data());
|
|
}
|
|
break;
|
|
}
|
|
case tensorflow::DT_INT32:
|
|
{
|
|
if (!content.empty())
|
|
m = Mat(1, content.size() / sizeof(int32_t), CV_32SC1, (void*)content.c_str());
|
|
else
|
|
{
|
|
const RepeatedField<int32_t>& field = tensor.int_val();
|
|
CV_Assert(!field.empty());
|
|
m = Mat(1, field.size(), CV_32SC1, (void*)field.data());
|
|
}
|
|
break;
|
|
}
|
|
case tensorflow::DT_HALF:
|
|
{
|
|
Mat halfs;
|
|
if (!content.empty())
|
|
{
|
|
static const int kHalfSize = 2;
|
|
halfs = Mat(1, content.size() / kHalfSize, CV_16UC1, (void*)content.c_str());
|
|
}
|
|
else
|
|
{
|
|
const RepeatedField<int32_t>& field = tensor.half_val();
|
|
CV_Assert(!field.empty());
|
|
Mat ints(1, field.size(), CV_32SC1, (void*)field.data());
|
|
ints.convertTo(halfs, CV_16UC1);
|
|
}
|
|
// Reinterpret as a signed shorts just for a convertFp16 call.
|
|
Mat halfsSigned(halfs.size(), CV_16SC1, halfs.data);
|
|
convertFp16(halfsSigned, m);
|
|
break;
|
|
}
|
|
case tensorflow::DT_QUINT8:
|
|
{
|
|
CV_Assert(!content.empty());
|
|
m = Mat(1, content.size(), CV_8UC1, (void*)content.c_str());
|
|
break;
|
|
}
|
|
default:
|
|
CV_Error(Error::StsError, "Tensor's data type is not supported");
|
|
break;
|
|
}
|
|
return copy ? m.clone() : m;
|
|
}
|
|
|
|
void releaseTensor(tensorflow::TensorProto* tensor)
|
|
{
|
|
if (!tensor->mutable_tensor_content()->empty())
|
|
{
|
|
delete tensor->release_tensor_content();
|
|
}
|
|
}
|
|
|
|
static void permute(google::protobuf::RepeatedPtrField<tensorflow::NodeDef>* data,
|
|
const std::vector<int>& indices)
|
|
{
|
|
const int num = data->size();
|
|
CV_Assert(num == indices.size());
|
|
|
|
std::vector<int> elemIdToPos(num);
|
|
std::vector<int> posToElemId(num);
|
|
for (int i = 0; i < num; ++i)
|
|
{
|
|
elemIdToPos[i] = i;
|
|
posToElemId[i] = i;
|
|
}
|
|
for (int i = 0; i < num; ++i)
|
|
{
|
|
int elemId = indices[i];
|
|
int pos = elemIdToPos[elemId];
|
|
if (pos != i)
|
|
{
|
|
data->SwapElements(i, pos);
|
|
const int swappedElemId = posToElemId[i];
|
|
elemIdToPos[elemId] = i;
|
|
elemIdToPos[swappedElemId] = pos;
|
|
|
|
posToElemId[i] = elemId;
|
|
posToElemId[pos] = swappedElemId;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Is based on tensorflow::graph_transforms::SortByExecutionOrder
|
|
void sortByExecutionOrder(tensorflow::GraphDef& net)
|
|
{
|
|
// Maps node's name to index at net.node() list.
|
|
std::map<std::string, int> nodesMap;
|
|
std::map<std::string, int>::iterator nodesMapIt;
|
|
for (int i = 0; i < net.node_size(); ++i)
|
|
{
|
|
const tensorflow::NodeDef& node = net.node(i);
|
|
nodesMap.insert(std::make_pair(node.name(), i));
|
|
}
|
|
|
|
// Indices of nodes which use specific node as input.
|
|
std::vector<std::vector<int> > edges(nodesMap.size());
|
|
std::vector<int> numRefsToAdd(nodesMap.size(), 0);
|
|
std::vector<int> nodesToAdd;
|
|
for (int i = 0; i < net.node_size(); ++i)
|
|
{
|
|
const tensorflow::NodeDef& node = net.node(i);
|
|
int numInputsInGraph = 0;
|
|
for (int j = 0; j < node.input_size(); ++j)
|
|
{
|
|
std::string inpName = node.input(j);
|
|
inpName = inpName.substr(0, inpName.rfind(':'));
|
|
inpName = inpName.substr(inpName.find('^') + 1);
|
|
|
|
nodesMapIt = nodesMap.find(inpName);
|
|
if (nodesMapIt != nodesMap.end())
|
|
{
|
|
edges[nodesMapIt->second].push_back(i);
|
|
numInputsInGraph += 1;
|
|
}
|
|
}
|
|
if (numInputsInGraph == 0)
|
|
nodesToAdd.push_back(i);
|
|
else
|
|
{
|
|
if (node.op() == "Merge" || node.op() == "RefMerge")
|
|
{
|
|
int numControlEdges = 0;
|
|
for (int j = 0; j < numInputsInGraph; ++j)
|
|
numControlEdges += node.input(j)[0] == '^';
|
|
numRefsToAdd[i] = numControlEdges + 1;
|
|
}
|
|
else
|
|
numRefsToAdd[i] = numInputsInGraph;
|
|
}
|
|
}
|
|
|
|
std::vector<int> permIds;
|
|
permIds.reserve(net.node_size());
|
|
while (!nodesToAdd.empty())
|
|
{
|
|
int nodeToAdd = nodesToAdd.back();
|
|
nodesToAdd.pop_back();
|
|
|
|
permIds.push_back(nodeToAdd);
|
|
|
|
for (int i = 0; i < edges[nodeToAdd].size(); ++i)
|
|
{
|
|
int consumerId = edges[nodeToAdd][i];
|
|
if (numRefsToAdd[consumerId] > 0)
|
|
{
|
|
if (numRefsToAdd[consumerId] == 1)
|
|
nodesToAdd.push_back(consumerId);
|
|
else
|
|
CV_Assert(numRefsToAdd[consumerId] >= 0);
|
|
numRefsToAdd[consumerId] -= 1;
|
|
}
|
|
}
|
|
}
|
|
CV_Assert(permIds.size() == net.node_size());
|
|
permute(net.mutable_node(), permIds);
|
|
}
|
|
|
|
// Remove training switches (Switch and Merge nodes and corresponding subgraphs).
|
|
void removePhaseSwitches(tensorflow::GraphDef& net)
|
|
{
|
|
std::vector<int> nodesToRemove;
|
|
std::map<std::string, int> nodesMap;
|
|
std::map<std::string, int>::iterator nodesMapIt;
|
|
std::queue<int> mergeOpSubgraphNodes;
|
|
for (int i = 0; i < net.node_size(); ++i)
|
|
{
|
|
const tensorflow::NodeDef& node = net.node(i);
|
|
nodesMap.insert(std::make_pair(node.name(), i));
|
|
if (node.op() == "Switch" || node.op() == "Merge")
|
|
{
|
|
CV_Assert(node.input_size() > 0);
|
|
// Replace consumers' inputs.
|
|
for (int j = 0; j < net.node_size(); ++j)
|
|
{
|
|
tensorflow::NodeDef* consumer = net.mutable_node(j);
|
|
for (int k = 0; k < consumer->input_size(); ++k)
|
|
{
|
|
std::string inpName = consumer->input(k);
|
|
inpName = inpName.substr(0, inpName.rfind(':'));
|
|
if (inpName == node.name())
|
|
{
|
|
consumer->set_input(k, node.input(0));
|
|
}
|
|
}
|
|
}
|
|
nodesToRemove.push_back(i);
|
|
if (node.op() == "Merge" || node.op() == "Switch")
|
|
mergeOpSubgraphNodes.push(i);
|
|
}
|
|
}
|
|
|
|
std::vector<int> numConsumers(net.node_size(), 0);
|
|
for (int i = 0; i < net.node_size(); ++i)
|
|
{
|
|
const tensorflow::NodeDef& node = net.node(i);
|
|
for (int j = 0; j < node.input_size(); ++j)
|
|
{
|
|
std::string inpName = node.input(j);
|
|
inpName = inpName.substr(1 + (int)inpName.find('^'), inpName.rfind(':'));
|
|
nodesMapIt = nodesMap.find(inpName);
|
|
CV_Assert(nodesMapIt != nodesMap.end());
|
|
numConsumers[nodesMapIt->second] += 1;
|
|
}
|
|
}
|
|
|
|
// Remove subgraphs of unused nodes which are terminated by Merge nodes.
|
|
while (!mergeOpSubgraphNodes.empty())
|
|
{
|
|
const tensorflow::NodeDef& node = net.node(mergeOpSubgraphNodes.front());
|
|
mergeOpSubgraphNodes.pop();
|
|
for (int i = 0; i < node.input_size(); ++i)
|
|
{
|
|
std::string inpName = node.input(i);
|
|
inpName = inpName.substr(1 + (int)inpName.find('^'), inpName.rfind(':'));
|
|
nodesMapIt = nodesMap.find(inpName);
|
|
CV_Assert(nodesMapIt != nodesMap.end());
|
|
|
|
int inpNodeId = nodesMapIt->second;
|
|
if (numConsumers[inpNodeId] == 1)
|
|
{
|
|
mergeOpSubgraphNodes.push(inpNodeId);
|
|
nodesToRemove.push_back(inpNodeId);
|
|
}
|
|
else if (numConsumers[inpNodeId] > 0)
|
|
numConsumers[inpNodeId] -= 1;
|
|
}
|
|
}
|
|
std::sort(nodesToRemove.begin(), nodesToRemove.end());
|
|
for (int i = nodesToRemove.size() - 1; i >= 0; --i)
|
|
{
|
|
if (nodesToRemove[i] < net.node_size()) // Ids might be repeated.
|
|
net.mutable_node()->DeleteSubrange(nodesToRemove[i], 1);
|
|
}
|
|
}
|
|
|
|
|
|
CV__DNN_EXPERIMENTAL_NS_END
|
|
}} // namespace dnn, namespace cv
|
|
|
|
#endif // HAVE_PROTOBUF
|