mirror of
https://github.com/opencv/opencv.git
synced 2024-11-25 19:50:38 +08:00
273 lines
14 KiB
C++
273 lines
14 KiB
C++
|
|
//============================================================================
|
|
// Name : HighDynamicRange_RetinaCompression.cpp
|
|
// Author : Alexandre Benoit (benoit.alexandre.vision@gmail.com)
|
|
// Version : 0.1
|
|
// Copyright : Alexandre Benoit, LISTIC Lab, july 2011
|
|
// Description : HighDynamicRange compression (tone mapping) with the help of the Gipsa/Listic's retina in C++, Ansi-style
|
|
//============================================================================
|
|
|
|
#include <iostream>
|
|
#include <cstring>
|
|
|
|
#include "opencv2/opencv.hpp"
|
|
|
|
void help(std::string errorMessage)
|
|
{
|
|
std::cout<<"Program init error : "<<errorMessage<<std::endl;
|
|
std::cout<<"\nProgram call procedure : ./OpenEXRimages_HighDynamicRange_Retina_toneMapping [OpenEXR image to process]"<<std::endl;
|
|
std::cout<<"\t[OpenEXR image to process] : the input HDR image to process, must be an OpenEXR format, see http://www.openexr.com/ to get some samples or create your own using camera bracketing and Photoshop or equivalent software for OpenEXR image synthesis"<<std::endl;
|
|
std::cout<<"\nExamples:"<<std::endl;
|
|
std::cout<<"\t-Image processing : ./OpenEXRimages_HighDynamicRange_Retina_toneMapping memorial.exr"<<std::endl;
|
|
}
|
|
|
|
// simple procedure for 1D curve tracing
|
|
void drawPlot(const cv::Mat curve, const std::string figureTitle, const int lowerLimit, const int upperLimit)
|
|
{
|
|
//std::cout<<"curve size(h,w) = "<<curve.size().height<<", "<<curve.size().width<<std::endl;
|
|
cv::Mat displayedCurveImage = cv::Mat::ones(200, curve.size().height, CV_8U);
|
|
|
|
cv::Mat windowNormalizedCurve;
|
|
normalize(curve, windowNormalizedCurve, 0, 200, CV_MINMAX, CV_32F);
|
|
|
|
displayedCurveImage = cv::Scalar::all(255); // set a white background
|
|
int binW = cvRound((double)displayedCurveImage.cols/curve.size().height);
|
|
|
|
for( int i = 0; i < curve.size().height; i++ )
|
|
rectangle( displayedCurveImage, cv::Point(i*binW, displayedCurveImage.rows),
|
|
cv::Point((i+1)*binW, displayedCurveImage.rows - cvRound(windowNormalizedCurve.at<float>(i))),
|
|
cv::Scalar::all(0), -1, 8, 0 );
|
|
rectangle( displayedCurveImage, cv::Point(0, 0),
|
|
cv::Point((lowerLimit)*binW, 200),
|
|
cv::Scalar::all(128), -1, 8, 0 );
|
|
rectangle( displayedCurveImage, cv::Point(displayedCurveImage.cols, 0),
|
|
cv::Point((upperLimit)*binW, 200),
|
|
cv::Scalar::all(128), -1, 8, 0 );
|
|
|
|
cv::imshow(figureTitle, displayedCurveImage);
|
|
}
|
|
/*
|
|
* objective : get the gray level map of the input image and rescale it to the range [0-255]
|
|
*/void rescaleGrayLevelMat(const cv::Mat &inputMat, cv::Mat &outputMat, const float histogramClippingLimit)
|
|
{
|
|
|
|
// adjust output matrix wrt the input size but single channel
|
|
std::cout<<"Input image rescaling with histogram edges cutting (in order to eliminate bad pixels created during the HDR image creation) :"<<std::endl;
|
|
//std::cout<<"=> image size (h,w,channels) = "<<inputMat.size().height<<", "<<inputMat.size().width<<", "<<inputMat.channels()<<std::endl;
|
|
//std::cout<<"=> pixel coding (nbchannel, bytes per channel) = "<<inputMat.elemSize()/inputMat.elemSize1()<<", "<<inputMat.elemSize1()<<std::endl;
|
|
|
|
// rescale between 0-255, keeping floating point values
|
|
cv::normalize(inputMat, outputMat, 0.0, 255.0, cv::NORM_MINMAX);
|
|
|
|
// extract a 8bit image that will be used for histogram edge cut
|
|
cv::Mat intGrayImage;
|
|
if (inputMat.channels()==1)
|
|
{
|
|
outputMat.convertTo(intGrayImage, CV_8U);
|
|
}else
|
|
{
|
|
cv::Mat rgbIntImg;
|
|
outputMat.convertTo(rgbIntImg, CV_8UC3);
|
|
cvtColor(rgbIntImg, intGrayImage, CV_BGR2GRAY);
|
|
}
|
|
|
|
// get histogram density probability in order to cut values under above edges limits (here 5-95%)... usefull for HDR pixel errors cancellation
|
|
cv::Mat dst, hist;
|
|
int histSize = 256;
|
|
calcHist(&intGrayImage, 1, 0, cv::Mat(), hist, 1, &histSize, 0);
|
|
cv::Mat normalizedHist;
|
|
normalize(hist, normalizedHist, 1, 0, cv::NORM_L1, CV_32F); // normalize histogram so that its sum equals 1
|
|
|
|
double min_val, max_val;
|
|
CvMat histArr(normalizedHist);
|
|
cvMinMaxLoc(&histArr, &min_val, &max_val);
|
|
//std::cout<<"Hist max,min = "<<max_val<<", "<<min_val<<std::endl;
|
|
|
|
// compute density probability
|
|
cv::Mat denseProb=cv::Mat::zeros(normalizedHist.size(), CV_32F);
|
|
denseProb.at<float>(0)=normalizedHist.at<float>(0);
|
|
int histLowerLimit=0, histUpperLimit=0;
|
|
for (int i=1;i<normalizedHist.size().height;++i)
|
|
{
|
|
denseProb.at<float>(i)=denseProb.at<float>(i-1)+normalizedHist.at<float>(i);
|
|
//std::cout<<normalizedHist.at<float>(i)<<", "<<denseProb.at<float>(i)<<std::endl;
|
|
if ( denseProb.at<float>(i)<histogramClippingLimit)
|
|
histLowerLimit=i;
|
|
if ( denseProb.at<float>(i)<1-histogramClippingLimit)
|
|
histUpperLimit=i;
|
|
}
|
|
// deduce min and max admitted gray levels
|
|
float minInputValue = (float)histLowerLimit/histSize*255;
|
|
float maxInputValue = (float)histUpperLimit/histSize*255;
|
|
|
|
std::cout<<"=> Histogram limits "
|
|
<<"\n\t"<<histogramClippingLimit*100<<"% index = "<<histLowerLimit<<" => normalizedHist value = "<<denseProb.at<float>(histLowerLimit)<<" => input gray level = "<<minInputValue
|
|
<<"\n\t"<<(1-histogramClippingLimit)*100<<"% index = "<<histUpperLimit<<" => normalizedHist value = "<<denseProb.at<float>(histUpperLimit)<<" => input gray level = "<<maxInputValue
|
|
<<std::endl;
|
|
//drawPlot(denseProb, "input histogram density probability", histLowerLimit, histUpperLimit);
|
|
drawPlot(normalizedHist, "input histogram", histLowerLimit, histUpperLimit);
|
|
|
|
// rescale image range [minInputValue-maxInputValue] to [0-255]
|
|
outputMat-=minInputValue;
|
|
outputMat*=255.0/(maxInputValue-minInputValue);
|
|
// cut original histogram and back project to original image
|
|
cv::threshold( outputMat, outputMat, 255.0, 255.0, 2 ); //THRESH_TRUNC, clips values above 255
|
|
cv::threshold( outputMat, outputMat, 0.0, 0.0, 3 ); //THRESH_TOZERO, clips values under 0
|
|
|
|
}
|
|
// basic callback method for interface management
|
|
cv::Mat inputImage;
|
|
cv::Mat imageInputRescaled;
|
|
int histogramClippingValue;
|
|
void callBack_rescaleGrayLevelMat(int, void*)
|
|
{
|
|
std::cout<<"Histogram clipping value changed, current value = "<<histogramClippingValue<<std::endl;
|
|
rescaleGrayLevelMat(inputImage, imageInputRescaled, (float)histogramClippingValue/100.0);
|
|
normalize(imageInputRescaled, imageInputRescaled, 0.0, 255.0, cv::NORM_MINMAX);
|
|
}
|
|
|
|
cv::Ptr<cv::Retina> retina;
|
|
int retinaHcellsGain;
|
|
int localAdaptation_photoreceptors, localAdaptation_Gcells;
|
|
void callBack_updateRetinaParams(int, void*)
|
|
{
|
|
|
|
retina->setupOPLandIPLParvoChannel(true, true, (double)localAdaptation_photoreceptors/200.0, 0.5, 0.43, (double)retinaHcellsGain, 1.0, 7.0, (double)localAdaptation_Gcells/200.0);
|
|
}
|
|
|
|
int colorSaturationFactor;
|
|
void callback_saturateColors(int, void*)
|
|
{
|
|
retina->setColorSaturation((double)colorSaturationFactor/10.0);
|
|
}
|
|
|
|
int main(int argc, char* argv[]) {
|
|
// welcome message
|
|
std::cout<<"*********************************************************************************"<<std::endl;
|
|
std::cout<<"* Retina demonstration for High Dynamic Range compression (tone-mapping) : demonstrates the use of a wrapper class of the Gipsa/Listic Labs retina model."<<std::endl;
|
|
std::cout<<"* This retina model allows spatio-temporal image processing (applied on still images, video sequences)."<<std::endl;
|
|
std::cout<<"* This demo focuses demonstration of the dynamic compression capabilities of the model"<<std::endl;
|
|
std::cout<<"* => the main application is tone mapping of HDR images (i.e. see on a 8bit display a more than 8bits coded (up to 16bits) image with details in high and low luminance ranges"<<std::endl;
|
|
std::cout<<"* The retina model still have the following properties:"<<std::endl;
|
|
std::cout<<"* => It applies a spectral whithening (mid-frequency details enhancement)"<<std::endl;
|
|
std::cout<<"* => high frequency spatio-temporal noise reduction"<<std::endl;
|
|
std::cout<<"* => low frequency luminance to be reduced (luminance range compression)"<<std::endl;
|
|
std::cout<<"* => local logarithmic luminance compression allows details to be enhanced in low light conditions\n"<<std::endl;
|
|
std::cout<<"* for more information, reer to the following papers :"<<std::endl;
|
|
std::cout<<"* Benoit A., Caplier A., Durette B., Herault, J., \"USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING\", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011"<<std::endl;
|
|
std::cout<<"* Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891."<<std::endl;
|
|
std::cout<<"* => reports comments/remarks at benoit.alexandre.vision@gmail.com"<<std::endl;
|
|
std::cout<<"* => more informations and papers at : http://sites.google.com/site/benoitalexandrevision/"<<std::endl;
|
|
std::cout<<"*********************************************************************************"<<std::endl;
|
|
std::cout<<"** WARNING : this sample requires OpenCV to be configured with OpenEXR support **"<<std::endl;
|
|
std::cout<<"*********************************************************************************"<<std::endl;
|
|
std::cout<<"*** You can use free tools to generate OpenEXR images from images sets : ***"<<std::endl;
|
|
std::cout<<"*** => 1. take a set of photos from the same viewpoint using bracketing ***"<<std::endl;
|
|
std::cout<<"*** => 2. generate an OpenEXR image with tools like qtpfsgui.sourceforge.net ***"<<std::endl;
|
|
std::cout<<"*** => 3. apply tone mapping with this program ***"<<std::endl;
|
|
std::cout<<"*********************************************************************************"<<std::endl;
|
|
|
|
// basic input arguments checking
|
|
if (argc<2)
|
|
{
|
|
help("bad number of parameter");
|
|
return -1;
|
|
}
|
|
|
|
bool useLogSampling = !strcmp(argv[argc-1], "log"); // check if user wants retina log sampling processing
|
|
|
|
std::string inputImageName=argv[1];
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// checking input media type (still image, video file, live video acquisition)
|
|
std::cout<<"RetinaDemo: processing image "<<inputImageName<<std::endl;
|
|
// image processing case
|
|
// declare the retina input buffer... that will be fed differently in regard of the input media
|
|
inputImage = cv::imread(inputImageName, -1); // load image in RGB mode
|
|
std::cout<<"=> image size (h,w) = "<<inputImage.size().height<<", "<<inputImage.size().width<<std::endl;
|
|
if (!inputImage.total())
|
|
{
|
|
help("could not load image, program end");
|
|
return -1;
|
|
}
|
|
// rescale between 0 and 1
|
|
normalize(inputImage, inputImage, 0.0, 1.0, cv::NORM_MINMAX);
|
|
cv::Mat gammaTransformedImage;
|
|
cv::pow(inputImage, 1./5, gammaTransformedImage); // apply gamma curve: img = img ** (1./5)
|
|
imshow("EXR image original image, 16bits=>8bits linear rescaling ", inputImage);
|
|
imshow("EXR image with basic processing : 16bits=>8bits with gamma correction", gammaTransformedImage);
|
|
if (inputImage.empty())
|
|
{
|
|
help("Input image could not be loaded, aborting");
|
|
return -1;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// Program start in a try/catch safety context (Retina may throw errors)
|
|
try
|
|
{
|
|
/* create a retina instance with default parameters setup, uncomment the initialisation you wanna test
|
|
* -> if the last parameter is 'log', then activate log sampling (favour foveal vision and subsamples peripheral vision)
|
|
*/
|
|
if (useLogSampling)
|
|
retina = new cv::Retina("params.xml", inputImage.size(), true, cv::RETINA_COLOR_BAYER, true, 2.0, 10.0);
|
|
else// -> else allocate "classical" retina :
|
|
retina = new cv::Retina("params.xml", inputImage.size());
|
|
|
|
// declare retina output buffers
|
|
cv::Mat retinaOutput_parvo;
|
|
cv::Mat retinaOutput_magno;
|
|
|
|
/////////////////////////////////////////////
|
|
// prepare displays and interactions
|
|
histogramClippingValue=0; // default value... updated with interface slider
|
|
//inputRescaleMat = inputImage;
|
|
//outputRescaleMat = imageInputRescaled;
|
|
cv::namedWindow("Retina input image (with cut edges histogram for basic pixels error avoidance)",1);
|
|
cv::createTrackbar("histogram edges clipping limit", "Retina input image (with cut edges histogram for basic pixels error avoidance)",&histogramClippingValue,50,callBack_rescaleGrayLevelMat);
|
|
|
|
cv::namedWindow("Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping", 1);
|
|
colorSaturationFactor=3;
|
|
cv::createTrackbar("Color saturation", "Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping", &colorSaturationFactor,5,callback_saturateColors);
|
|
|
|
retinaHcellsGain=40;
|
|
cv::createTrackbar("Hcells gain", "Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping",&retinaHcellsGain,100,callBack_updateRetinaParams);
|
|
|
|
localAdaptation_photoreceptors=1;
|
|
localAdaptation_Gcells=185;
|
|
cv::createTrackbar("Ph sensitivity", "Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping", &localAdaptation_photoreceptors,199,callBack_updateRetinaParams);
|
|
cv::createTrackbar("Gcells sensitivity", "Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping", &localAdaptation_Gcells,199,callBack_updateRetinaParams);
|
|
|
|
/////////////////////////////////////////////
|
|
// apply default parameters of user interaction variables
|
|
rescaleGrayLevelMat(inputImage, imageInputRescaled, (float)histogramClippingValue/100);
|
|
retina->setColorSaturation(true,colorSaturationFactor);
|
|
callBack_updateRetinaParams(1,NULL); // first call for default parameters setup
|
|
|
|
// processing loop with stop condition
|
|
bool continueProcessing=true;
|
|
while(continueProcessing)
|
|
{
|
|
// run retina filter
|
|
retina->run(imageInputRescaled);
|
|
// Retrieve and display retina output
|
|
retina->getParvo(retinaOutput_parvo);
|
|
retina->getMagno(retinaOutput_magno);
|
|
cv::imshow("Retina input image (with cut edges histogram for basic pixels error avoidance)", imageInputRescaled/255.0);
|
|
cv::imshow("Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping", retinaOutput_parvo);
|
|
//cv::imshow("Retina Magno", retinaOutput_magno); // not usefull in this demo, uncomment if needed
|
|
cv::waitKey(10);
|
|
}
|
|
}catch(cv::Exception e)
|
|
{
|
|
std::cerr<<"Error using Retina : "<<e.what()<<std::endl;
|
|
}
|
|
|
|
// Program end message
|
|
std::cout<<"Retina demo end"<<std::endl;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|