mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
207 lines
5.2 KiB
Python
Executable File
207 lines
5.2 KiB
Python
Executable File
#!/usr/bin/env python
|
|
"""Algorithm serialization test."""
|
|
from __future__ import print_function
|
|
import base64
|
|
import json
|
|
import tempfile
|
|
import os
|
|
import cv2 as cv
|
|
import numpy as np
|
|
from tests_common import NewOpenCVTests
|
|
|
|
class MyData:
|
|
def __init__(self):
|
|
self.A = 97
|
|
self.X = np.pi
|
|
self.name = 'mydata1234'
|
|
|
|
def write(self, fs, name):
|
|
fs.startWriteStruct(name, cv.FileNode_MAP|cv.FileNode_FLOW)
|
|
fs.write('A', self.A)
|
|
fs.write('X', self.X)
|
|
fs.write('name', self.name)
|
|
fs.endWriteStruct()
|
|
|
|
def read(self, node):
|
|
if (not node.empty()):
|
|
self.A = int(node.getNode('A').real())
|
|
self.X = node.getNode('X').real()
|
|
self.name = node.getNode('name').string()
|
|
else:
|
|
self.A = self.X = 0
|
|
self.name = ''
|
|
|
|
class filestorage_io_test(NewOpenCVTests):
|
|
strings_data = ['image1.jpg', 'Awesomeness', '../data/baboon.jpg']
|
|
R0 = np.eye(3,3)
|
|
T0 = np.zeros((3,1))
|
|
|
|
def write_data(self, fname):
|
|
fs = cv.FileStorage(fname, cv.FileStorage_WRITE)
|
|
R = self.R0
|
|
T = self.T0
|
|
m = MyData()
|
|
|
|
fs.write('iterationNr', 100)
|
|
|
|
fs.startWriteStruct('strings', cv.FileNode_SEQ)
|
|
for elem in self.strings_data:
|
|
fs.write('', elem)
|
|
fs.endWriteStruct()
|
|
|
|
fs.startWriteStruct('Mapping', cv.FileNode_MAP)
|
|
fs.write('One', 1)
|
|
fs.write('Two', 2)
|
|
fs.endWriteStruct()
|
|
|
|
fs.write('R_MAT', R)
|
|
fs.write('T_MAT', T)
|
|
|
|
m.write(fs, 'MyData')
|
|
fs.release()
|
|
|
|
def read_data_and_check(self, fname):
|
|
fs = cv.FileStorage(fname, cv.FileStorage_READ)
|
|
|
|
n = fs.getNode('iterationNr')
|
|
itNr = int(n.real())
|
|
self.assertEqual(itNr, 100)
|
|
|
|
n = fs.getNode('strings')
|
|
self.assertTrue(n.isSeq())
|
|
self.assertEqual(n.size(), len(self.strings_data))
|
|
|
|
for i in range(n.size()):
|
|
self.assertEqual(n.at(i).string(), self.strings_data[i])
|
|
|
|
n = fs.getNode('Mapping')
|
|
self.assertEqual(int(n.getNode('Two').real()), 2)
|
|
self.assertEqual(int(n.getNode('One').real()), 1)
|
|
|
|
R = fs.getNode('R_MAT').mat()
|
|
T = fs.getNode('T_MAT').mat()
|
|
|
|
self.assertEqual(cv.norm(R, self.R0, cv.NORM_INF), 0)
|
|
self.assertEqual(cv.norm(T, self.T0, cv.NORM_INF), 0)
|
|
|
|
m0 = MyData()
|
|
m = MyData()
|
|
m.read(fs.getNode('MyData'))
|
|
self.assertEqual(m.A, m0.A)
|
|
self.assertEqual(m.X, m0.X)
|
|
self.assertEqual(m.name, m0.name)
|
|
|
|
n = fs.getNode('NonExisting')
|
|
self.assertTrue(n.isNone())
|
|
fs.release()
|
|
|
|
def run_fs_test(self, ext):
|
|
fd, fname = tempfile.mkstemp(prefix="opencv_python_sample_filestorage", suffix=ext)
|
|
os.close(fd)
|
|
self.write_data(fname)
|
|
self.read_data_and_check(fname)
|
|
os.remove(fname)
|
|
|
|
def test_xml(self):
|
|
self.run_fs_test(".xml")
|
|
|
|
def test_yml(self):
|
|
self.run_fs_test(".yml")
|
|
|
|
def test_json(self):
|
|
self.run_fs_test(".json")
|
|
|
|
def test_base64(self):
|
|
fd, fname = tempfile.mkstemp(prefix="opencv_python_sample_filestorage_base64", suffix=".json")
|
|
os.close(fd)
|
|
np.random.seed(42)
|
|
self.write_base64_json(fname)
|
|
os.remove(fname)
|
|
|
|
@staticmethod
|
|
def get_normal_2d_mat():
|
|
rows = 10
|
|
cols = 20
|
|
cn = 3
|
|
|
|
image = np.zeros((rows, cols, cn), np.uint8)
|
|
image[:] = (1, 2, 127)
|
|
|
|
for i in range(rows):
|
|
for j in range(cols):
|
|
image[i, j, 1] = (i + j) % 256
|
|
|
|
return image
|
|
|
|
@staticmethod
|
|
def get_normal_nd_mat():
|
|
shape = (2, 2, 1, 2)
|
|
cn = 4
|
|
|
|
image = np.zeros(shape + (cn,), np.float64)
|
|
image[:] = (0.888, 0.111, 0.666, 0.444)
|
|
|
|
return image
|
|
|
|
@staticmethod
|
|
def get_empty_2d_mat():
|
|
shape = (0, 0)
|
|
cn = 1
|
|
|
|
image = np.zeros(shape + (cn,), np.uint8)
|
|
|
|
return image
|
|
|
|
@staticmethod
|
|
def get_random_mat():
|
|
rows = 8
|
|
cols = 16
|
|
cn = 1
|
|
|
|
image = np.random.rand(rows, cols, cn)
|
|
|
|
return image
|
|
|
|
@staticmethod
|
|
def decode(data):
|
|
# strip $base64$
|
|
encoded = data[8:]
|
|
|
|
if len(encoded) == 0:
|
|
return b''
|
|
|
|
# strip info about datatype and padding
|
|
return base64.b64decode(encoded)[24:]
|
|
|
|
def write_base64_json(self, fname):
|
|
fs = cv.FileStorage(fname, cv.FileStorage_WRITE_BASE64)
|
|
|
|
mats = {'normal_2d_mat': self.get_normal_2d_mat(),
|
|
'normal_nd_mat': self.get_normal_nd_mat(),
|
|
'empty_2d_mat': self.get_empty_2d_mat(),
|
|
'random_mat': self.get_random_mat()}
|
|
|
|
for name, mat in mats.items():
|
|
fs.write(name, mat)
|
|
|
|
fs.release()
|
|
|
|
data = {}
|
|
with open(fname) as file:
|
|
data = json.load(file)
|
|
|
|
for name, mat in mats.items():
|
|
buffer = b''
|
|
|
|
if mat.size != 0:
|
|
if hasattr(mat, 'tobytes'):
|
|
buffer = mat.tobytes()
|
|
else:
|
|
buffer = mat.tostring()
|
|
|
|
self.assertEqual(buffer, self.decode(data[name]['data']))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
NewOpenCVTests.bootstrap()
|