mirror of
https://github.com/opencv/opencv.git
synced 2025-01-06 02:08:12 +08:00
eb90186614
* Corrected SSD text graph generation for Identity nodes * Added minor code corrections
334 lines
9.8 KiB
Python
334 lines
9.8 KiB
Python
def tokenize(s):
|
|
tokens = []
|
|
token = ""
|
|
isString = False
|
|
isComment = False
|
|
for symbol in s:
|
|
isComment = (isComment and symbol != '\n') or (not isString and symbol == '#')
|
|
if isComment:
|
|
continue
|
|
|
|
if symbol == ' ' or symbol == '\t' or symbol == '\r' or symbol == '\'' or \
|
|
symbol == '\n' or symbol == ':' or symbol == '\"' or symbol == ';' or \
|
|
symbol == ',':
|
|
|
|
if (symbol == '\"' or symbol == '\'') and isString:
|
|
tokens.append(token)
|
|
token = ""
|
|
else:
|
|
if isString:
|
|
token += symbol
|
|
elif token:
|
|
tokens.append(token)
|
|
token = ""
|
|
isString = (symbol == '\"' or symbol == '\'') ^ isString
|
|
|
|
elif symbol == '{' or symbol == '}' or symbol == '[' or symbol == ']':
|
|
if token:
|
|
tokens.append(token)
|
|
token = ""
|
|
tokens.append(symbol)
|
|
else:
|
|
token += symbol
|
|
if token:
|
|
tokens.append(token)
|
|
return tokens
|
|
|
|
|
|
def parseMessage(tokens, idx):
|
|
msg = {}
|
|
assert(tokens[idx] == '{')
|
|
|
|
isArray = False
|
|
while True:
|
|
if not isArray:
|
|
idx += 1
|
|
if idx < len(tokens):
|
|
fieldName = tokens[idx]
|
|
else:
|
|
return None
|
|
if fieldName == '}':
|
|
break
|
|
|
|
idx += 1
|
|
fieldValue = tokens[idx]
|
|
|
|
if fieldValue == '{':
|
|
embeddedMsg, idx = parseMessage(tokens, idx)
|
|
if fieldName in msg:
|
|
msg[fieldName].append(embeddedMsg)
|
|
else:
|
|
msg[fieldName] = [embeddedMsg]
|
|
elif fieldValue == '[':
|
|
isArray = True
|
|
elif fieldValue == ']':
|
|
isArray = False
|
|
else:
|
|
if fieldName in msg:
|
|
msg[fieldName].append(fieldValue)
|
|
else:
|
|
msg[fieldName] = [fieldValue]
|
|
return msg, idx
|
|
|
|
|
|
def readTextMessage(filePath):
|
|
if not filePath:
|
|
return {}
|
|
with open(filePath, 'rt') as f:
|
|
content = f.read()
|
|
|
|
tokens = tokenize('{' + content + '}')
|
|
msg = parseMessage(tokens, 0)
|
|
return msg[0] if msg else {}
|
|
|
|
|
|
def listToTensor(values):
|
|
if all([isinstance(v, float) for v in values]):
|
|
dtype = 'DT_FLOAT'
|
|
field = 'float_val'
|
|
elif all([isinstance(v, int) for v in values]):
|
|
dtype = 'DT_INT32'
|
|
field = 'int_val'
|
|
else:
|
|
raise Exception('Wrong values types')
|
|
|
|
msg = {
|
|
'tensor': {
|
|
'dtype': dtype,
|
|
'tensor_shape': {
|
|
'dim': {
|
|
'size': len(values)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
msg['tensor'][field] = values
|
|
return msg
|
|
|
|
|
|
def addConstNode(name, values, graph_def):
|
|
node = NodeDef()
|
|
node.name = name
|
|
node.op = 'Const'
|
|
node.addAttr('value', values)
|
|
graph_def.node.extend([node])
|
|
|
|
|
|
def addSlice(inp, out, begins, sizes, graph_def):
|
|
beginsNode = NodeDef()
|
|
beginsNode.name = out + '/begins'
|
|
beginsNode.op = 'Const'
|
|
beginsNode.addAttr('value', begins)
|
|
graph_def.node.extend([beginsNode])
|
|
|
|
sizesNode = NodeDef()
|
|
sizesNode.name = out + '/sizes'
|
|
sizesNode.op = 'Const'
|
|
sizesNode.addAttr('value', sizes)
|
|
graph_def.node.extend([sizesNode])
|
|
|
|
sliced = NodeDef()
|
|
sliced.name = out
|
|
sliced.op = 'Slice'
|
|
sliced.input.append(inp)
|
|
sliced.input.append(beginsNode.name)
|
|
sliced.input.append(sizesNode.name)
|
|
graph_def.node.extend([sliced])
|
|
|
|
|
|
def addReshape(inp, out, shape, graph_def):
|
|
shapeNode = NodeDef()
|
|
shapeNode.name = out + '/shape'
|
|
shapeNode.op = 'Const'
|
|
shapeNode.addAttr('value', shape)
|
|
graph_def.node.extend([shapeNode])
|
|
|
|
reshape = NodeDef()
|
|
reshape.name = out
|
|
reshape.op = 'Reshape'
|
|
reshape.input.append(inp)
|
|
reshape.input.append(shapeNode.name)
|
|
graph_def.node.extend([reshape])
|
|
|
|
|
|
def addSoftMax(inp, out, graph_def):
|
|
softmax = NodeDef()
|
|
softmax.name = out
|
|
softmax.op = 'Softmax'
|
|
softmax.addAttr('axis', -1)
|
|
softmax.input.append(inp)
|
|
graph_def.node.extend([softmax])
|
|
|
|
|
|
def addFlatten(inp, out, graph_def):
|
|
flatten = NodeDef()
|
|
flatten.name = out
|
|
flatten.op = 'Flatten'
|
|
flatten.input.append(inp)
|
|
graph_def.node.extend([flatten])
|
|
|
|
|
|
class NodeDef:
|
|
def __init__(self):
|
|
self.input = []
|
|
self.name = ""
|
|
self.op = ""
|
|
self.attr = {}
|
|
|
|
def addAttr(self, key, value):
|
|
assert(not key in self.attr)
|
|
if isinstance(value, bool):
|
|
self.attr[key] = {'b': value}
|
|
elif isinstance(value, int):
|
|
self.attr[key] = {'i': value}
|
|
elif isinstance(value, float):
|
|
self.attr[key] = {'f': value}
|
|
elif isinstance(value, str):
|
|
self.attr[key] = {'s': value}
|
|
elif isinstance(value, list):
|
|
self.attr[key] = listToTensor(value)
|
|
else:
|
|
raise Exception('Unknown type of attribute ' + key)
|
|
|
|
def Clear(self):
|
|
self.input = []
|
|
self.name = ""
|
|
self.op = ""
|
|
self.attr = {}
|
|
|
|
|
|
class GraphDef:
|
|
def __init__(self):
|
|
self.node = []
|
|
|
|
def save(self, filePath):
|
|
with open(filePath, 'wt') as f:
|
|
|
|
def printAttr(d, indent):
|
|
indent = ' ' * indent
|
|
for key, value in sorted(d.items(), key=lambda x:x[0].lower()):
|
|
value = value if isinstance(value, list) else [value]
|
|
for v in value:
|
|
if isinstance(v, dict):
|
|
f.write(indent + key + ' {\n')
|
|
printAttr(v, len(indent) + 2)
|
|
f.write(indent + '}\n')
|
|
else:
|
|
isString = False
|
|
if isinstance(v, str) and not v.startswith('DT_'):
|
|
try:
|
|
float(v)
|
|
except:
|
|
isString = True
|
|
|
|
if isinstance(v, bool):
|
|
printed = 'true' if v else 'false'
|
|
elif v == 'true' or v == 'false':
|
|
printed = 'true' if v == 'true' else 'false'
|
|
elif isString:
|
|
printed = '\"%s\"' % v
|
|
else:
|
|
printed = str(v)
|
|
f.write(indent + key + ': ' + printed + '\n')
|
|
|
|
for node in self.node:
|
|
f.write('node {\n')
|
|
f.write(' name: \"%s\"\n' % node.name)
|
|
f.write(' op: \"%s\"\n' % node.op)
|
|
for inp in node.input:
|
|
f.write(' input: \"%s\"\n' % inp)
|
|
for key, value in sorted(node.attr.items(), key=lambda x:x[0].lower()):
|
|
f.write(' attr {\n')
|
|
f.write(' key: \"%s\"\n' % key)
|
|
f.write(' value {\n')
|
|
printAttr(value, 6)
|
|
f.write(' }\n')
|
|
f.write(' }\n')
|
|
f.write('}\n')
|
|
|
|
|
|
def parseTextGraph(filePath):
|
|
msg = readTextMessage(filePath)
|
|
|
|
graph = GraphDef()
|
|
for node in msg['node']:
|
|
graphNode = NodeDef()
|
|
graphNode.name = node['name'][0]
|
|
graphNode.op = node['op'][0]
|
|
graphNode.input = node['input'] if 'input' in node else []
|
|
|
|
if 'attr' in node:
|
|
for attr in node['attr']:
|
|
graphNode.attr[attr['key'][0]] = attr['value'][0]
|
|
|
|
graph.node.append(graphNode)
|
|
return graph
|
|
|
|
|
|
# Removes Identity nodes
|
|
def removeIdentity(graph_def):
|
|
identities = {}
|
|
for node in graph_def.node:
|
|
if node.op == 'Identity' or node.op == 'IdentityN':
|
|
inp = node.input[0]
|
|
if inp in identities:
|
|
identities[node.name] = identities[inp]
|
|
else:
|
|
identities[node.name] = inp
|
|
graph_def.node.remove(node)
|
|
|
|
for node in graph_def.node:
|
|
for i in range(len(node.input)):
|
|
if node.input[i] in identities:
|
|
node.input[i] = identities[node.input[i]]
|
|
|
|
|
|
def removeUnusedNodesAndAttrs(to_remove, graph_def):
|
|
unusedAttrs = ['T', 'Tshape', 'N', 'Tidx', 'Tdim', 'use_cudnn_on_gpu',
|
|
'Index', 'Tperm', 'is_training', 'Tpaddings']
|
|
|
|
removedNodes = []
|
|
|
|
for i in reversed(range(len(graph_def.node))):
|
|
op = graph_def.node[i].op
|
|
name = graph_def.node[i].name
|
|
|
|
if to_remove(name, op):
|
|
if op != 'Const':
|
|
removedNodes.append(name)
|
|
|
|
del graph_def.node[i]
|
|
else:
|
|
for attr in unusedAttrs:
|
|
if attr in graph_def.node[i].attr:
|
|
del graph_def.node[i].attr[attr]
|
|
|
|
# Remove references to removed nodes except Const nodes.
|
|
for node in graph_def.node:
|
|
for i in reversed(range(len(node.input))):
|
|
if node.input[i] in removedNodes:
|
|
del node.input[i]
|
|
|
|
|
|
def writeTextGraph(modelPath, outputPath, outNodes):
|
|
try:
|
|
import cv2 as cv
|
|
|
|
cv.dnn.writeTextGraph(modelPath, outputPath)
|
|
except:
|
|
import tensorflow as tf
|
|
from tensorflow.tools.graph_transforms import TransformGraph
|
|
|
|
with tf.gfile.FastGFile(modelPath, 'rb') as f:
|
|
graph_def = tf.GraphDef()
|
|
graph_def.ParseFromString(f.read())
|
|
|
|
graph_def = TransformGraph(graph_def, ['image_tensor'], outNodes, ['sort_by_execution_order'])
|
|
|
|
for node in graph_def.node:
|
|
if node.op == 'Const':
|
|
if 'value' in node.attr and node.attr['value'].tensor.tensor_content:
|
|
node.attr['value'].tensor.tensor_content = b''
|
|
|
|
tf.train.write_graph(graph_def, "", outputPath, as_text=True)
|