opencv/3rdparty/openvx/include/openvx_hal.hpp

1109 lines
37 KiB
C++

#ifndef OPENCV_OPENVX_HAL_HPP_INCLUDED
#define OPENCV_OPENVX_HAL_HPP_INCLUDED
#include "opencv2/core/hal/interface.h"
#include "opencv2/imgproc/hal/interface.h"
#include "VX/vx.h"
#include "VX/vxu.h"
#include <string>
#include <vector>
#include <algorithm>
#include <cfloat>
#include <climits>
#include <cmath>
#if VX_VERSION == VX_VERSION_1_0
#define VX_MEMORY_TYPE_HOST VX_IMPORT_TYPE_HOST
#define VX_INTERPOLATION_BILINEAR VX_INTERPOLATION_TYPE_BILINEAR
#define VX_INTERPOLATION_AREA VX_INTERPOLATION_TYPE_AREA
#define VX_INTERPOLATION_NEAREST_NEIGHBOR VX_INTERPOLATION_TYPE_NEAREST_NEIGHBOR
#endif
//==================================================================================================
// utility
// ...
#if 0
#include <cstdio>
#define PRINT(...) printf(__VA_ARGS__)
#else
#define PRINT(...)
#endif
#if __cplusplus >= 201103L
#include <chrono>
struct Tick
{
typedef std::chrono::time_point<std::chrono::steady_clock> point_t;
point_t start;
point_t point;
Tick()
{
start = std::chrono::steady_clock::now();
point = std::chrono::steady_clock::now();
}
inline int one()
{
point_t old = point;
point = std::chrono::steady_clock::now();
return std::chrono::duration_cast<std::chrono::microseconds>(point - old).count();
}
inline int total()
{
return std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::steady_clock::now() - start).count();
}
};
#endif
//==================================================================================================
// One more OpenVX C++ binding :-)
// ...
template <typename T>
struct VX_Traits
{
enum {
ImgType = 0,
DataType = 0
};
};
template <>
struct VX_Traits<uchar>
{
enum {
ImgType = VX_DF_IMAGE_U8,
DataType = VX_TYPE_UINT8
};
};
template <>
struct VX_Traits<ushort>
{
enum {
ImgType = VX_DF_IMAGE_U16,
DataType = VX_TYPE_UINT16
};
};
template <>
struct VX_Traits<short>
{
enum {
ImgType = VX_DF_IMAGE_S16,
DataType = VX_TYPE_INT16
};
};
template <>
struct VX_Traits<float>
{
enum {
ImgType = 0,
DataType = VX_TYPE_FLOAT32
};
};
struct vxContext;
struct vxImage;
struct vxErr;
struct vxErr
{
vx_status status;
std::string msg;
vxErr(vx_status status_, const std::string & msg_) : status(status_), msg(msg_) {}
void check()
{
if (status != VX_SUCCESS)
throw *this;
}
void print()
{
PRINT("OpenVX HAL impl error: %d (%s)\n", status, msg.c_str());
}
static void check(vx_context ctx)
{
vxErr(vxGetStatus((vx_reference)ctx), "context check").check();
}
static void check(vx_image img)
{
vxErr(vxGetStatus((vx_reference)img), "image check").check();
}
static void check(vx_matrix mtx)
{
vxErr(vxGetStatus((vx_reference)mtx), "matrix check").check();
}
static void check(vx_convolution cnv)
{
vxErr(vxGetStatus((vx_reference)cnv), "convolution check").check();
}
static void check(vx_status s)
{
vxErr(s, "status check").check();
}
};
struct vxContext
{
vx_context ctx;
static vxContext * getContext();
private:
vxContext()
{
ctx = vxCreateContext();
vxErr::check(ctx);
}
~vxContext()
{
vxReleaseContext(&ctx);
}
};
struct vxImage
{
vx_image img;
template <typename T>
vxImage(vxContext &ctx, const T *data, size_t step, int w, int h)
{
if (h == 1)
step = w * sizeof(T);
vx_imagepatch_addressing_t addr;
addr.dim_x = w;
addr.dim_y = h;
addr.stride_x = sizeof(T);
addr.stride_y = (vx_int32)step;
void *ptrs[] = { (void*)data };
img = vxCreateImageFromHandle(ctx.ctx, VX_Traits<T>::ImgType, &addr, ptrs, VX_MEMORY_TYPE_HOST);
vxErr::check(img);
}
vxImage(vxContext &ctx, int imgType, const uchar *data, size_t step, int w, int h)
{
if (h == 1)
step = w;
vx_imagepatch_addressing_t addr[4];
void *ptrs[4];
switch (imgType)
{
case VX_DF_IMAGE_U8:
case VX_DF_IMAGE_U16:
case VX_DF_IMAGE_S16:
case VX_DF_IMAGE_U32:
case VX_DF_IMAGE_S32:
case VX_DF_IMAGE_RGB:
case VX_DF_IMAGE_RGBX:
case VX_DF_IMAGE_UYVY:
case VX_DF_IMAGE_YUYV:
addr[0].dim_x = w;
addr[0].dim_y = h;
addr[0].stride_x = imgType == VX_DF_IMAGE_U8 ? 1 :
imgType == VX_DF_IMAGE_RGB ? 3 :
(imgType == VX_DF_IMAGE_U16 || imgType == VX_DF_IMAGE_S16 ||
imgType == VX_DF_IMAGE_UYVY || imgType == VX_DF_IMAGE_YUYV) ? 2 : 4;
addr[0].stride_y = (vx_int32)step;
ptrs[0] = (void*)data;
break;
case VX_DF_IMAGE_NV12:
case VX_DF_IMAGE_NV21:
addr[0].dim_x = w;
addr[0].dim_y = h;
addr[0].stride_x = 1;
addr[0].stride_y = (vx_int32)step;
ptrs[0] = (void*)data;
addr[1].dim_x = w / 2;
addr[1].dim_y = h / 2;
addr[1].stride_x = 2;
addr[1].stride_y = (vx_int32)step;
ptrs[1] = (void*)(data + h * step);
break;
case VX_DF_IMAGE_IYUV:
case VX_DF_IMAGE_YUV4:
addr[0].dim_x = w;
addr[0].dim_y = h;
addr[0].stride_x = 1;
addr[0].stride_y = (vx_int32)step;
ptrs[0] = (void*)data;
addr[1].dim_x = imgType == VX_DF_IMAGE_YUV4 ? w : w / 2;
addr[1].dim_y = imgType == VX_DF_IMAGE_YUV4 ? h : h / 2;
if (addr[1].dim_x != (step - addr[1].dim_x))
vxErr(VX_ERROR_INVALID_PARAMETERS, "UV planes use variable stride").check();
addr[1].stride_x = 1;
addr[1].stride_y = (vx_int32)addr[1].dim_x;
ptrs[1] = (void*)(data + h * step);
addr[2].dim_x = addr[1].dim_x;
addr[2].dim_y = addr[1].dim_y;
addr[2].stride_x = 1;
addr[2].stride_y = addr[1].stride_y;
ptrs[2] = (void*)(data + h * step + addr[1].dim_y * addr[1].stride_y);
break;
default:
vxErr(VX_ERROR_INVALID_PARAMETERS, "Bad image format").check();
}
img = vxCreateImageFromHandle(ctx.ctx, imgType, addr, ptrs, VX_MEMORY_TYPE_HOST);
vxErr::check(img);
}
~vxImage()
{
#if VX_VERSION > VX_VERSION_1_0
vxErr::check(vxSwapImageHandle(img, NULL, NULL, 1));
#endif
vxReleaseImage(&img);
}
};
struct vxMatrix
{
vx_matrix mtx;
template <typename T>
vxMatrix(vxContext &ctx, const T *data, int w, int h)
{
mtx = vxCreateMatrix(ctx.ctx, VX_Traits<T>::DataType, w, h);
vxErr::check(mtx);
vxErr::check(vxCopyMatrix(mtx, const_cast<T*>(data), VX_WRITE_ONLY, VX_MEMORY_TYPE_HOST));
}
~vxMatrix()
{
vxReleaseMatrix(&mtx);
}
};
#if VX_VERSION > VX_VERSION_1_0
struct vxConvolution
{
vx_convolution cnv;
vxConvolution(vxContext &ctx, const short *data, int w, int h)
{
cnv = vxCreateConvolution(ctx.ctx, w, h);
vxErr::check(cnv);
vxErr::check(vxCopyConvolutionCoefficients(cnv, const_cast<short*>(data), VX_WRITE_ONLY, VX_MEMORY_TYPE_HOST));
}
~vxConvolution()
{
vxReleaseConvolution(&cnv);
}
};
#endif
//==================================================================================================
// real code starts here
// ...
#define OVX_BINARY_OP(hal_func, ovx_call) \
template <typename T> \
inline int ovx_hal_##hal_func(const T *a, size_t astep, const T *b, size_t bstep, T *c, size_t cstep, int w, int h) \
{ \
try \
{ \
vxContext * ctx = vxContext::getContext(); \
vxImage ia(*ctx, a, astep, w, h); \
vxImage ib(*ctx, b, bstep, w, h); \
vxImage ic(*ctx, c, cstep, w, h); \
ovx_call \
} \
catch (vxErr & e) \
{ \
e.print(); \
return CV_HAL_ERROR_UNKNOWN; \
} \
return CV_HAL_ERROR_OK; \
}
OVX_BINARY_OP(add, {vxErr::check(vxuAdd(ctx->ctx, ia.img, ib.img, VX_CONVERT_POLICY_SATURATE, ic.img));})
OVX_BINARY_OP(sub, {vxErr::check(vxuSubtract(ctx->ctx, ia.img, ib.img, VX_CONVERT_POLICY_SATURATE, ic.img));})
OVX_BINARY_OP(absdiff, {vxErr::check(vxuAbsDiff(ctx->ctx, ia.img, ib.img, ic.img));})
OVX_BINARY_OP(and, {vxErr::check(vxuAnd(ctx->ctx, ia.img, ib.img, ic.img));})
OVX_BINARY_OP(or, {vxErr::check(vxuOr(ctx->ctx, ia.img, ib.img, ic.img));})
OVX_BINARY_OP(xor, {vxErr::check(vxuXor(ctx->ctx, ia.img, ib.img, ic.img));})
template <typename T>
inline int ovx_hal_mul(const T *a, size_t astep, const T *b, size_t bstep, T *c, size_t cstep, int w, int h, double scale)
{
#ifdef _MSC_VER
const float MAGIC_SCALE = 0x0.01010102;
#else
const float MAGIC_SCALE = 0x1.010102p-8;
#endif
try
{
int rounding_policy = VX_ROUND_POLICY_TO_ZERO;
float fscale = (float)scale;
if (fabs(fscale - MAGIC_SCALE) > FLT_EPSILON)
{
int exp = 0;
double significand = frexp(fscale, &exp);
if((significand != 0.5) || (exp > 1) || (exp < -14))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
}
else
{
fscale = MAGIC_SCALE;
rounding_policy = VX_ROUND_POLICY_TO_NEAREST_EVEN;// That's the only rounding that MUST be supported for 1/255 scale
}
vxContext * ctx = vxContext::getContext();
vxImage ia(*ctx, a, astep, w, h);
vxImage ib(*ctx, b, bstep, w, h);
vxImage ic(*ctx, c, cstep, w, h);
vxErr::check(vxuMultiply(ctx->ctx, ia.img, ib.img, fscale, VX_CONVERT_POLICY_SATURATE, rounding_policy, ic.img));
}
catch (vxErr & e)
{
e.print();
return CV_HAL_ERROR_UNKNOWN;
}
return CV_HAL_ERROR_OK;
}
inline int ovx_hal_not(const uchar *a, size_t astep, uchar *c, size_t cstep, int w, int h)
{
try
{
vxContext * ctx = vxContext::getContext();
vxImage ia(*ctx, a, astep, w, h);
vxImage ic(*ctx, c, cstep, w, h);
vxErr::check(vxuNot(ctx->ctx, ia.img, ic.img));
}
catch (vxErr & e)
{
e.print();
return CV_HAL_ERROR_UNKNOWN;
}
return CV_HAL_ERROR_OK;
}
inline int ovx_hal_merge8u(const uchar **src_data, uchar *dst_data, int len, int cn)
{
if (cn != 3 && cn != 4)
return CV_HAL_ERROR_NOT_IMPLEMENTED;
try
{
vxContext * ctx = vxContext::getContext();
vxImage ia(*ctx, src_data[0], len, len, 1);
vxImage ib(*ctx, src_data[1], len, len, 1);
vxImage ic(*ctx, src_data[2], len, len, 1);
vxImage id(*ctx, cn == 4 ? VX_DF_IMAGE_RGBX : VX_DF_IMAGE_RGB, dst_data, len, len, 1);
vxErr::check(vxuChannelCombine(ctx->ctx, ia.img, ib.img, ic.img,
cn == 4 ? vxImage(*ctx, src_data[3], len, len, 1).img : NULL,
id.img));
}
catch (vxErr & e)
{
e.print();
return CV_HAL_ERROR_UNKNOWN;
}
return CV_HAL_ERROR_OK;
}
inline int ovx_hal_resize(int atype, const uchar *a, size_t astep, int aw, int ah, uchar *b, size_t bstep, int bw, int bh, double inv_scale_x, double inv_scale_y, int interpolation)
{
try
{
vxContext * ctx = vxContext::getContext();
vxImage ia(*ctx, a, astep, aw, ah);
vxImage ib(*ctx, b, bstep, bw, bh);
if(!((atype == CV_8UC1 || atype == CV_8SC1) &&
inv_scale_x > 0 && inv_scale_y > 0 &&
(bw - 0.5) / inv_scale_x - 0.5 < aw && (bh - 0.5) / inv_scale_y - 0.5 < ah &&
(bw + 0.5) / inv_scale_x + 0.5 >= aw && (bh + 0.5) / inv_scale_y + 0.5 >= ah &&
std::abs(bw / inv_scale_x - aw) < 0.1 && std::abs(bh / inv_scale_y - ah) < 0.1 ))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
int mode;
if (interpolation == CV_HAL_INTER_LINEAR)
mode = VX_INTERPOLATION_BILINEAR;
else if (interpolation == CV_HAL_INTER_AREA)
mode = VX_INTERPOLATION_AREA;
else if (interpolation == CV_HAL_INTER_NEAREST)
mode = VX_INTERPOLATION_NEAREST_NEIGHBOR;
else
return CV_HAL_ERROR_NOT_IMPLEMENTED;
vxErr::check( vxuScaleImage(ctx->ctx, ia.img, ib.img, mode));
}
catch (vxErr & e)
{
e.print();
return CV_HAL_ERROR_UNKNOWN;
}
return CV_HAL_ERROR_OK;
}
#if VX_VERSION > VX_VERSION_1_0
inline int ovx_hal_warpAffine(int atype, const uchar *a, size_t astep, int aw, int ah, uchar *b, size_t bstep, int bw, int bh, const double M[6], int interpolation, int borderType, const double borderValue[4])
{
try
{
vxContext * ctx = vxContext::getContext();
vxImage ia(*ctx, a, astep, aw, ah);
vxImage ib(*ctx, b, bstep, bw, bh);
if (!(atype == CV_8UC1 || atype == CV_8SC1))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
vx_border_t border;
switch (borderType)
{
case CV_HAL_BORDER_CONSTANT:
border.mode = VX_BORDER_CONSTANT;
border.constant_value.U8 = (vx_uint8)(borderValue[0]);
break;
case CV_HAL_BORDER_REPLICATE:
border.mode = VX_BORDER_REPLICATE;
break;
default:
return CV_HAL_ERROR_NOT_IMPLEMENTED;
}
int mode;
if (interpolation == CV_HAL_INTER_LINEAR)
mode = VX_INTERPOLATION_BILINEAR;
else if (interpolation == CV_HAL_INTER_AREA)
mode = VX_INTERPOLATION_AREA;
else if (interpolation == CV_HAL_INTER_NEAREST)
mode = VX_INTERPOLATION_NEAREST_NEIGHBOR;
else
return CV_HAL_ERROR_NOT_IMPLEMENTED;
std::vector<float> data;
data.reserve(6);
for (int j = 0; j < 3; ++j)
for (int i = 0; i < 2; ++i)
data.push_back((float)(M[i*3+j]));
vxMatrix mtx(*ctx, data.data(), 2, 3);
//ATTENTION: VX_CONTEXT_IMMEDIATE_BORDER attribute change could lead to strange issues in multi-threaded environments
//since OpenVX standart says nothing about thread-safety for now
vx_border_t prevBorder;
vxErr::check(vxQueryContext(ctx->ctx, VX_CONTEXT_IMMEDIATE_BORDER, &prevBorder, sizeof(prevBorder)));
vxErr::check(vxSetContextAttribute(ctx->ctx, VX_CONTEXT_IMMEDIATE_BORDER, &border, sizeof(border)));
vxErr::check(vxuWarpAffine(ctx->ctx, ia.img, mtx.mtx, mode, ib.img));
vxErr::check(vxSetContextAttribute(ctx->ctx, VX_CONTEXT_IMMEDIATE_BORDER, &prevBorder, sizeof(prevBorder)));
}
catch (vxErr & e)
{
e.print();
return CV_HAL_ERROR_UNKNOWN;
}
return CV_HAL_ERROR_OK;
}
inline int ovx_hal_warpPerspectve(int atype, const uchar *a, size_t astep, int aw, int ah, uchar *b, size_t bstep, int bw, int bh, const double M[9], int interpolation, int borderType, const double borderValue[4])
{
try
{
vxContext * ctx = vxContext::getContext();
vxImage ia(*ctx, a, astep, aw, ah);
vxImage ib(*ctx, b, bstep, bw, bh);
if (!(atype == CV_8UC1 || atype == CV_8SC1))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
vx_border_t border;
switch (borderType)
{
case CV_HAL_BORDER_CONSTANT:
border.mode = VX_BORDER_CONSTANT;
border.constant_value.U8 = (vx_uint8)(borderValue[0]);
break;
case CV_HAL_BORDER_REPLICATE:
border.mode = VX_BORDER_REPLICATE;
break;
default:
return CV_HAL_ERROR_NOT_IMPLEMENTED;
}
int mode;
if (interpolation == CV_HAL_INTER_LINEAR)
mode = VX_INTERPOLATION_BILINEAR;
else if (interpolation == CV_HAL_INTER_AREA)
mode = VX_INTERPOLATION_AREA;
else if (interpolation == CV_HAL_INTER_NEAREST)
mode = VX_INTERPOLATION_NEAREST_NEIGHBOR;
else
return CV_HAL_ERROR_NOT_IMPLEMENTED;
std::vector<float> data;
data.reserve(9);
for (int j = 0; j < 3; ++j)
for (int i = 0; i < 3; ++i)
data.push_back((float)(M[i * 3 + j]));
vxMatrix mtx(*ctx, data.data(), 3, 3);
//ATTENTION: VX_CONTEXT_IMMEDIATE_BORDER attribute change could lead to strange issues in multi-threaded environments
//since OpenVX standart says nothing about thread-safety for now
vx_border_t prevBorder;
vxErr::check(vxQueryContext(ctx->ctx, VX_CONTEXT_IMMEDIATE_BORDER, &prevBorder, sizeof(prevBorder)));
vxErr::check(vxSetContextAttribute(ctx->ctx, VX_CONTEXT_IMMEDIATE_BORDER, &border, sizeof(border)));
vxErr::check(vxuWarpPerspective(ctx->ctx, ia.img, mtx.mtx, mode, ib.img));
vxErr::check(vxSetContextAttribute(ctx->ctx, VX_CONTEXT_IMMEDIATE_BORDER, &prevBorder, sizeof(prevBorder)));
}
catch (vxErr & e)
{
e.print();
return CV_HAL_ERROR_UNKNOWN;
}
return CV_HAL_ERROR_OK;
}
struct cvhalFilter2D;
struct FilterCtx
{
vxConvolution cnv;
int dst_type;
vx_border_t border;
FilterCtx(vxContext &ctx, const short *data, int w, int h, int _dst_type, vx_border_t & _border) :
cnv(ctx, data, w, h), dst_type(_dst_type), border(_border) {}
};
inline int ovx_hal_filterInit(cvhalFilter2D **filter_context, uchar *kernel_data, size_t kernel_step, int kernel_type, int kernel_width, int kernel_height,
int , int , int src_type, int dst_type, int borderType, double delta, int anchor_x, int anchor_y, bool allowSubmatrix, bool allowInplace)
{
if (!filter_context || !kernel_data || allowSubmatrix || allowInplace || delta != 0 ||
src_type != CV_8UC1 || (dst_type != CV_8UC1 && dst_type != CV_16SC1) ||
kernel_width % 2 == 0 || kernel_height % 2 == 0 || anchor_x != kernel_width / 2 || anchor_y != kernel_height / 2)
return CV_HAL_ERROR_NOT_IMPLEMENTED;
vx_border_t border;
switch (borderType)
{
case CV_HAL_BORDER_CONSTANT:
border.mode = VX_BORDER_CONSTANT;
border.constant_value.U8 = 0;
break;
case CV_HAL_BORDER_REPLICATE:
border.mode = VX_BORDER_REPLICATE;
break;
default:
return CV_HAL_ERROR_NOT_IMPLEMENTED;
}
vxContext * ctx = vxContext::getContext();
std::vector<short> data;
data.reserve(kernel_width*kernel_height);
switch (kernel_type)
{
case CV_8UC1:
for (int j = 0; j < kernel_height; ++j)
{
uchar * row = (uchar*)(kernel_data + kernel_step*j);
for (int i = 0; i < kernel_width; ++i)
data.push_back(row[i]);
}
break;
case CV_8SC1:
for (int j = 0; j < kernel_height; ++j)
{
schar * row = (schar*)(kernel_data + kernel_step*j);
for (int i = 0; i < kernel_width; ++i)
data.push_back(row[i]);
}
break;
case CV_16SC1:
for (int j = 0; j < kernel_height; ++j)
{
short * row = (short*)(kernel_data + kernel_step*j);
for (int i = 0; i < kernel_width; ++i)
data.push_back(row[i]);
}
default:
return CV_HAL_ERROR_NOT_IMPLEMENTED;
}
FilterCtx* cnv = new FilterCtx(*ctx, data.data(), kernel_width, kernel_height, dst_type, border);
if (!cnv)
return CV_HAL_ERROR_UNKNOWN;
*filter_context = (cvhalFilter2D*)(cnv);
return CV_HAL_ERROR_OK;
}
inline int ovx_hal_filterFree(cvhalFilter2D *filter_context)
{
if (filter_context)
{
delete (FilterCtx*)filter_context;
return CV_HAL_ERROR_OK;
}
else
{
return CV_HAL_ERROR_UNKNOWN;
}
}
inline int ovx_hal_filter(cvhalFilter2D *filter_context, uchar *a, size_t astep, uchar *b, size_t bstep, int w, int h, int , int , int , int )
{
try
{
FilterCtx* cnv = (FilterCtx*)filter_context;
if(!cnv)
vxErr(VX_ERROR_INVALID_PARAMETERS, "Bad HAL context").check();
vxContext * ctx = vxContext::getContext();
vxImage ia(*ctx, a, astep, w, h);
//ATTENTION: VX_CONTEXT_IMMEDIATE_BORDER attribute change could lead to strange issues in multi-threaded environments
//since OpenVX standart says nothing about thread-safety for now
vx_border_t prevBorder;
vxErr::check(vxQueryContext(ctx->ctx, VX_CONTEXT_IMMEDIATE_BORDER, &prevBorder, sizeof(prevBorder)));
vxErr::check(vxSetContextAttribute(ctx->ctx, VX_CONTEXT_IMMEDIATE_BORDER, &(cnv->border), sizeof(cnv->border)));
if (cnv->dst_type == CV_16SC1)
{
vxImage ib(*ctx, (short*)b, bstep, w, h);
vxErr::check(vxuConvolve(ctx->ctx, ia.img, cnv->cnv.cnv, ib.img));
}
else
{
vxImage ib(*ctx, b, bstep, w, h);
vxErr::check(vxuConvolve(ctx->ctx, ia.img, cnv->cnv.cnv, ib.img));
}
vxErr::check(vxSetContextAttribute(ctx->ctx, VX_CONTEXT_IMMEDIATE_BORDER, &prevBorder, sizeof(prevBorder)));
}
catch (vxErr & e)
{
e.print();
return CV_HAL_ERROR_UNKNOWN;
}
return CV_HAL_ERROR_OK;
}
inline int ovx_hal_sepFilterInit(cvhalFilter2D **filter_context, int src_type, int dst_type,
int kernel_type, uchar *kernelx_data, int kernelx_length, uchar *kernely_data, int kernely_length,
int anchor_x, int anchor_y, double delta, int borderType)
{
if (!filter_context || !kernelx_data || !kernely_data || delta != 0 ||
src_type != CV_8UC1 || (dst_type != CV_8UC1 && dst_type != CV_16SC1) ||
kernelx_length % 2 == 0 || kernely_length % 2 == 0 || anchor_x != kernelx_length / 2 || anchor_y != kernely_length / 2)
return CV_HAL_ERROR_NOT_IMPLEMENTED;
vx_border_t border;
switch (borderType)
{
case CV_HAL_BORDER_CONSTANT:
border.mode = VX_BORDER_CONSTANT;
border.constant_value.U8 = 0;
break;
case CV_HAL_BORDER_REPLICATE:
border.mode = VX_BORDER_REPLICATE;
break;
default:
return CV_HAL_ERROR_NOT_IMPLEMENTED;
}
vxContext * ctx = vxContext::getContext();
//At the moment OpenVX doesn't support separable filters natively so combine kernels to generic convolution
std::vector<short> data;
data.reserve(kernelx_length*kernely_length);
switch (kernel_type)
{
case CV_8UC1:
for (int j = 0; j < kernely_length; ++j)
for (int i = 0; i < kernelx_length; ++i)
data.push_back((short)(kernely_data[j]) * kernelx_data[i]);
break;
case CV_8SC1:
for (int j = 0; j < kernely_length; ++j)
for (int i = 0; i < kernelx_length; ++i)
data.push_back((short)(((schar*)kernely_data)[j]) * ((schar*)kernelx_data)[i]);
break;
default:
return CV_HAL_ERROR_NOT_IMPLEMENTED;
}
FilterCtx* cnv = new FilterCtx(*ctx, data.data(), kernelx_length, kernely_length, dst_type, border);
if (!cnv)
return CV_HAL_ERROR_UNKNOWN;
*filter_context = (cvhalFilter2D*)(cnv);
return CV_HAL_ERROR_OK;
}
struct MorphCtx
{
vxMatrix mask;
int operation;
vx_border_t border;
MorphCtx(vxContext &ctx, const uchar *data, int w, int h, int _operation, vx_border_t & _border) :
mask(ctx, data, w, h), operation(_operation), border(_border) {}
};
inline int ovx_hal_morphInit(cvhalFilter2D **filter_context, int operation, int src_type, int dst_type, int , int ,
int kernel_type, uchar *kernel_data, size_t kernel_step, int kernel_width, int kernel_height, int anchor_x, int anchor_y,
int borderType, const double borderValue[4], int iterations, bool allowSubmatrix, bool allowInplace)
{
if (!filter_context || !kernel_data || allowSubmatrix || allowInplace || iterations != 1 ||
src_type != CV_8UC1 || dst_type != CV_8UC1 ||
kernel_width % 2 == 0 || kernel_height % 2 == 0 || anchor_x != kernel_width / 2 || anchor_y != kernel_height / 2)
return CV_HAL_ERROR_NOT_IMPLEMENTED;
vx_border_t border;
switch (borderType)
{
case CV_HAL_BORDER_CONSTANT:
border.mode = VX_BORDER_CONSTANT;
if (borderValue[0] == DBL_MAX && borderValue[1] == DBL_MAX && borderValue[2] == DBL_MAX && borderValue[3] == DBL_MAX)
{
if (operation == MORPH_ERODE)
border.constant_value.U8 = UCHAR_MAX;
else
border.constant_value.U8 = 0;
}
else
{
int rounded = round(borderValue[0]);
border.constant_value.U8 = (uchar)((unsigned)rounded <= UCHAR_MAX ? rounded : rounded > 0 ? UCHAR_MAX : 0);
}
break;
case CV_HAL_BORDER_REPLICATE:
border.mode = VX_BORDER_REPLICATE;
break;
default:
return CV_HAL_ERROR_NOT_IMPLEMENTED;
}
vxContext * ctx = vxContext::getContext();
vx_size maxKernelDim;
vxErr::check(vxQueryContext(ctx->ctx, VX_CONTEXT_NONLINEAR_MAX_DIMENSION, &maxKernelDim, sizeof(maxKernelDim)));
if (kernel_width > maxKernelDim || kernel_height > maxKernelDim)
return CV_HAL_ERROR_NOT_IMPLEMENTED;
std::vector<uchar> kernel_mat;
kernel_mat.reserve(kernel_width * kernel_height);
switch (CV_MAT_DEPTH(kernel_type))
{
case CV_8U:
case CV_8S:
for (int j = 0; j < kernel_height; ++j)
{
uchar * kernel_row = kernel_data + j * kernel_step;
for (int i = 0; i < kernel_width; ++i)
kernel_mat.push_back(kernel_row[i] ? 255 : 0);
}
break;
case CV_16U:
case CV_16S:
for (int j = 0; j < kernel_height; ++j)
{
short * kernel_row = (short*)(kernel_data + j * kernel_step);
for (int i = 0; i < kernel_width; ++i)
kernel_mat.push_back(kernel_row[i] ? 255 : 0);
}
break;
case CV_32S:
for (int j = 0; j < kernel_height; ++j)
{
int * kernel_row = (int*)(kernel_data + j * kernel_step);
for (int i = 0; i < kernel_width; ++i)
kernel_mat.push_back(kernel_row[i] ? 255 : 0);
}
break;
case CV_32F:
for (int j = 0; j < kernel_height; ++j)
{
float * kernel_row = (float*)(kernel_data + j * kernel_step);
for (int i = 0; i < kernel_width; ++i)
kernel_mat.push_back(kernel_row[i] ? 255 : 0);
}
break;
case CV_64F:
for (int j = 0; j < kernel_height; ++j)
{
double * kernel_row = (double*)(kernel_data + j * kernel_step);
for (int i = 0; i < kernel_width; ++i)
kernel_mat.push_back(kernel_row[i] ? 255 : 0);
}
break;
default:
return CV_HAL_ERROR_NOT_IMPLEMENTED;
}
MorphCtx* mat;
switch (operation)
{
case MORPH_ERODE:
mat = new MorphCtx(*ctx, kernel_mat.data(), kernel_width, kernel_height, VX_NONLINEAR_FILTER_MIN, border);
break;
case MORPH_DILATE:
mat = new MorphCtx(*ctx, kernel_mat.data(), kernel_width, kernel_height, VX_NONLINEAR_FILTER_MAX, border);
break;
default:
return CV_HAL_ERROR_NOT_IMPLEMENTED;
}
if (!mat)
return CV_HAL_ERROR_UNKNOWN;
*filter_context = (cvhalFilter2D*)(mat);
return CV_HAL_ERROR_OK;
}
inline int ovx_hal_morphFree(cvhalFilter2D *filter_context)
{
if (filter_context)
{
delete (MorphCtx*)filter_context;
return CV_HAL_ERROR_OK;
}
else
{
return CV_HAL_ERROR_UNKNOWN;
}
}
inline int ovx_hal_morph(cvhalFilter2D *filter_context, uchar *a, size_t astep, uchar *b, size_t bstep, int w, int h, int , int , int , int , int , int , int , int )
{
try
{
MorphCtx* mat = (MorphCtx*)filter_context;
if (!mat)
vxErr(VX_ERROR_INVALID_PARAMETERS, "Bad HAL context").check();
vxContext * ctx = vxContext::getContext();
vxImage ia(*ctx, a, astep, w, h);
vxImage ib(*ctx, b, bstep, w, h);
//ATTENTION: VX_CONTEXT_IMMEDIATE_BORDER attribute change could lead to strange issues in multi-threaded environments
//since OpenVX standart says nothing about thread-safety for now
vx_border_t prevBorder;
vxErr::check(vxQueryContext(ctx->ctx, VX_CONTEXT_IMMEDIATE_BORDER, &prevBorder, sizeof(prevBorder)));
vxErr::check(vxSetContextAttribute(ctx->ctx, VX_CONTEXT_IMMEDIATE_BORDER, &(mat->border), sizeof(mat->border)));
vxErr::check(vxuNonLinearFilter(ctx->ctx, mat->operation, ia.img, mat->mask.mtx, ib.img));
vxErr::check(vxSetContextAttribute(ctx->ctx, VX_CONTEXT_IMMEDIATE_BORDER, &prevBorder, sizeof(prevBorder)));
}
catch (vxErr & e)
{
e.print();
return CV_HAL_ERROR_UNKNOWN;
}
return CV_HAL_ERROR_OK;
}
#endif // 1.0 guard
inline int ovx_hal_cvtBGRtoBGR(const uchar * a, size_t astep, uchar * b, size_t bstep, int w, int h, int depth, int acn, int bcn, bool swapBlue)
{
if (depth != CV_8U || swapBlue || acn == bcn || (acn != 3 && acn != 4) || (bcn != 3 && bcn != 4))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
if (w & 1 || h & 1) // It's strange but sample implementation unable to convert odd sized images
return CV_HAL_ERROR_NOT_IMPLEMENTED;
try
{
vxContext * ctx = vxContext::getContext();
vxImage ia(*ctx, acn == 3 ? VX_DF_IMAGE_RGB : VX_DF_IMAGE_RGBX, a, astep, w, h);
vxImage ib(*ctx, bcn == 3 ? VX_DF_IMAGE_RGB : VX_DF_IMAGE_RGBX, b, bstep, w, h);
vxErr::check(vxuColorConvert(ctx->ctx, ia.img, ib.img));
}
catch (vxErr & e)
{
e.print();
return CV_HAL_ERROR_UNKNOWN;
}
return CV_HAL_ERROR_OK;
}
inline int ovx_hal_cvtTwoPlaneYUVtoBGR(const uchar * a, size_t astep, uchar * b, size_t bstep, int w, int h, int bcn, bool swapBlue, int uIdx)
{
if (!swapBlue || (bcn != 3 && bcn != 4))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
if (w & 1 || h & 1) // It's not described in spec but sample implementation unable to convert odd sized images
return CV_HAL_ERROR_NOT_IMPLEMENTED;
try
{
vxContext * ctx = vxContext::getContext();
vxImage ia(*ctx, uIdx ? VX_DF_IMAGE_NV21 : VX_DF_IMAGE_NV12, a, astep, w, h);
vx_channel_range_e cRange;
vxErr::check(vxQueryImage(ia.img, VX_IMAGE_RANGE, &cRange, sizeof(cRange)));
if (cRange == VX_CHANNEL_RANGE_FULL)
return CV_HAL_ERROR_NOT_IMPLEMENTED; // OpenCV store NV12/NV21 as RANGE_RESTRICTED while OpenVX expect RANGE_FULL
vxImage ib(*ctx, bcn == 3 ? VX_DF_IMAGE_RGB : VX_DF_IMAGE_RGBX, b, bstep, w, h);
vxErr::check(vxuColorConvert(ctx->ctx, ia.img, ib.img));
}
catch (vxErr & e)
{
e.print();
return CV_HAL_ERROR_UNKNOWN;
}
return CV_HAL_ERROR_OK;
}
inline int ovx_hal_cvtThreePlaneYUVtoBGR(const uchar * a, size_t astep, uchar * b, size_t bstep, int w, int h, int bcn, bool swapBlue, int uIdx)
{
if (!swapBlue || (bcn != 3 && bcn != 4) || uIdx || w / 2 != astep - w / 2)
return CV_HAL_ERROR_NOT_IMPLEMENTED;
if (w & 1 || h & 1) // It's not described in spec but sample implementation unable to convert odd sized images
return CV_HAL_ERROR_NOT_IMPLEMENTED;
try
{
vxContext * ctx = vxContext::getContext();
vxImage ia(*ctx, VX_DF_IMAGE_IYUV, a, astep, w, h);
vx_channel_range_e cRange;
vxErr::check(vxQueryImage(ia.img, VX_IMAGE_RANGE, &cRange, sizeof(cRange)));
if (cRange == VX_CHANNEL_RANGE_FULL)
return CV_HAL_ERROR_NOT_IMPLEMENTED; // OpenCV store NV12/NV21 as RANGE_RESTRICTED while OpenVX expect RANGE_FULL
vxImage ib(*ctx, bcn == 3 ? VX_DF_IMAGE_RGB : VX_DF_IMAGE_RGBX, b, bstep, w, h);
vxErr::check(vxuColorConvert(ctx->ctx, ia.img, ib.img));
}
catch (vxErr & e)
{
e.print();
return CV_HAL_ERROR_UNKNOWN;
}
return CV_HAL_ERROR_OK;
}
inline int ovx_hal_cvtBGRtoThreePlaneYUV(const uchar * a, size_t astep, uchar * b, size_t bstep, int w, int h, int acn, bool swapBlue, int uIdx)
{
if (!swapBlue || (acn != 3 && acn != 4) || uIdx || w / 2 != bstep - w / 2)
return CV_HAL_ERROR_NOT_IMPLEMENTED;
if (w & 1 || h & 1) // It's not described in spec but sample implementation unable to convert odd sized images
return CV_HAL_ERROR_NOT_IMPLEMENTED;
try
{
vxContext * ctx = vxContext::getContext();
vxImage ia(*ctx, acn == 3 ? VX_DF_IMAGE_RGB : VX_DF_IMAGE_RGBX, a, astep, w, h);
vxImage ib(*ctx, VX_DF_IMAGE_IYUV, b, bstep, w, h);
vxErr::check(vxuColorConvert(ctx->ctx, ia.img, ib.img));
}
catch (vxErr & e)
{
e.print();
return CV_HAL_ERROR_UNKNOWN;
}
return CV_HAL_ERROR_OK;
}
inline int ovx_hal_cvtOnePlaneYUVtoBGR(const uchar * a, size_t astep, uchar * b, size_t bstep, int w, int h, int bcn, bool swapBlue, int uIdx, int ycn)
{
if (!swapBlue || (bcn != 3 && bcn != 4) || uIdx)
return CV_HAL_ERROR_NOT_IMPLEMENTED;
if (w & 1) // It's not described in spec but sample implementation unable to convert odd sized images
return CV_HAL_ERROR_NOT_IMPLEMENTED;
try
{
vxContext * ctx = vxContext::getContext();
vxImage ia(*ctx, ycn ? VX_DF_IMAGE_UYVY : VX_DF_IMAGE_YUYV, a, astep, w, h);
vx_channel_range_e cRange;
vxErr::check(vxQueryImage(ia.img, VX_IMAGE_RANGE, &cRange, sizeof(cRange)));
if (cRange == VX_CHANNEL_RANGE_FULL)
return CV_HAL_ERROR_NOT_IMPLEMENTED; // OpenCV store NV12/NV21 as RANGE_RESTRICTED while OpenVX expect RANGE_FULL
vxImage ib(*ctx, bcn == 3 ? VX_DF_IMAGE_RGB : VX_DF_IMAGE_RGBX, b, bstep, w, h);
vxErr::check(vxuColorConvert(ctx->ctx, ia.img, ib.img));
}
catch (vxErr & e)
{
e.print();
return CV_HAL_ERROR_UNKNOWN;
}
return CV_HAL_ERROR_OK;
}
//==================================================================================================
// functions redefinition
// ...
#undef cv_hal_add8u
#define cv_hal_add8u ovx_hal_add<uchar>
#undef cv_hal_add16s
#define cv_hal_add16s ovx_hal_add<short>
#undef cv_hal_sub8u
#define cv_hal_sub8u ovx_hal_sub<uchar>
#undef cv_hal_sub16s
#define cv_hal_sub16s ovx_hal_sub<short>
#undef cv_hal_absdiff8u
#define cv_hal_absdiff8u ovx_hal_absdiff<uchar>
#undef cv_hal_absdiff16s
#define cv_hal_absdiff16s ovx_hal_absdiff<short>
#undef cv_hal_and8u
#define cv_hal_and8u ovx_hal_and<uchar>
#undef cv_hal_or8u
#define cv_hal_or8u ovx_hal_or<uchar>
#undef cv_hal_xor8u
#define cv_hal_xor8u ovx_hal_xor<uchar>
#undef cv_hal_not8u
#define cv_hal_not8u ovx_hal_not
#undef cv_hal_mul8u
#define cv_hal_mul8u ovx_hal_mul<uchar>
#undef cv_hal_mul16s
#define cv_hal_mul16s ovx_hal_mul<short>
#undef cv_hal_merge8u
#define cv_hal_merge8u ovx_hal_merge8u
#undef cv_hal_resize
#define cv_hal_resize ovx_hal_resize
#if VX_VERSION > VX_VERSION_1_0
#undef cv_hal_warpAffine
#define cv_hal_warpAffine ovx_hal_warpAffine
#undef cv_hal_warpPerspective
#define cv_hal_warpPerspective ovx_hal_warpPerspectve
#undef cv_hal_filterInit
#define cv_hal_filterInit ovx_hal_filterInit
#undef cv_hal_filter
#define cv_hal_filter ovx_hal_filter
#undef cv_hal_filterFree
#define cv_hal_filterFree ovx_hal_filterFree
#undef cv_hal_sepFilterInit
#define cv_hal_sepFilterInit ovx_hal_sepFilterInit
#undef cv_hal_sepFilter
#define cv_hal_sepFilter ovx_hal_filter
#undef cv_hal_sepFilterFree
#define cv_hal_sepFilterFree ovx_hal_filterFree
#undef cv_hal_morphInit
#define cv_hal_morphInit ovx_hal_morphInit
#undef cv_hal_morph
#define cv_hal_morph ovx_hal_morph
#undef cv_hal_morphFree
#define cv_hal_morphFree ovx_hal_morphFree
#endif // 1.0 guard
#undef cv_hal_cvtBGRtoBGR
#define cv_hal_cvtBGRtoBGR ovx_hal_cvtBGRtoBGR
#undef cv_hal_cvtTwoPlaneYUVtoBGR
#define cv_hal_cvtTwoPlaneYUVtoBGR ovx_hal_cvtTwoPlaneYUVtoBGR
#undef cv_hal_cvtThreePlaneYUVtoBGR
#define cv_hal_cvtThreePlaneYUVtoBGR ovx_hal_cvtThreePlaneYUVtoBGR
#undef cv_hal_cvtBGRtoThreePlaneYUV
#define cv_hal_cvtBGRtoThreePlaneYUV ovx_hal_cvtBGRtoThreePlaneYUV
#undef cv_hal_cvtOnePlaneYUVtoBGR
#define cv_hal_cvtOnePlaneYUVtoBGR ovx_hal_cvtOnePlaneYUVtoBGR
#endif