mirror of
https://github.com/opencv/opencv.git
synced 2024-12-14 08:59:11 +08:00
684 lines
20 KiB
C++
684 lines
20 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html
|
|
|
|
#include "perf_precomp.hpp"
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
using namespace cv;
|
|
|
|
/** Reprojects screen point to camera space given z coord. */
|
|
struct Reprojector
|
|
{
|
|
Reprojector() {}
|
|
inline Reprojector(Matx33f intr)
|
|
{
|
|
fxinv = 1.f / intr(0, 0), fyinv = 1.f / intr(1, 1);
|
|
cx = intr(0, 2), cy = intr(1, 2);
|
|
}
|
|
template<typename T>
|
|
inline cv::Point3_<T> operator()(cv::Point3_<T> p) const
|
|
{
|
|
T x = p.z * (p.x - cx) * fxinv;
|
|
T y = p.z * (p.y - cy) * fyinv;
|
|
return cv::Point3_<T>(x, y, p.z);
|
|
}
|
|
|
|
float fxinv, fyinv, cx, cy;
|
|
};
|
|
|
|
template<class Scene>
|
|
struct RenderInvoker : ParallelLoopBody
|
|
{
|
|
RenderInvoker(Mat_<float>& _frame, Affine3f _pose,
|
|
Reprojector _reproj, float _depthFactor, bool _onlySemisphere)
|
|
: ParallelLoopBody(),
|
|
frame(_frame),
|
|
pose(_pose),
|
|
reproj(_reproj),
|
|
depthFactor(_depthFactor),
|
|
onlySemisphere(_onlySemisphere)
|
|
{ }
|
|
|
|
virtual void operator ()(const cv::Range& r) const
|
|
{
|
|
for (int y = r.start; y < r.end; y++)
|
|
{
|
|
float* frameRow = frame[y];
|
|
for (int x = 0; x < frame.cols; x++)
|
|
{
|
|
float pix = 0;
|
|
|
|
Point3f orig = pose.translation();
|
|
// direction through pixel
|
|
Point3f screenVec = reproj(Point3f((float)x, (float)y, 1.f));
|
|
float xyt = 1.f / (screenVec.x * screenVec.x +
|
|
screenVec.y * screenVec.y + 1.f);
|
|
Point3f dir = normalize(Vec3f(pose.rotation() * screenVec));
|
|
// screen space axis
|
|
dir.y = -dir.y;
|
|
|
|
const float maxDepth = 20.f;
|
|
const float maxSteps = 256;
|
|
float t = 0.f;
|
|
for (int step = 0; step < maxSteps && t < maxDepth; step++)
|
|
{
|
|
Point3f p = orig + dir * t;
|
|
float d = Scene::map(p, onlySemisphere);
|
|
if (d < 0.000001f)
|
|
{
|
|
float depth = std::sqrt(t * t * xyt);
|
|
pix = depth * depthFactor;
|
|
break;
|
|
}
|
|
t += d;
|
|
}
|
|
|
|
frameRow[x] = pix;
|
|
}
|
|
}
|
|
}
|
|
|
|
Mat_<float>& frame;
|
|
Affine3f pose;
|
|
Reprojector reproj;
|
|
float depthFactor;
|
|
bool onlySemisphere;
|
|
};
|
|
|
|
template<class Scene>
|
|
struct RenderColorInvoker : ParallelLoopBody
|
|
{
|
|
RenderColorInvoker(Mat_<Vec3f>& _frame, Affine3f _pose,
|
|
Reprojector _reproj,
|
|
float _depthFactor, bool _onlySemisphere) : ParallelLoopBody(),
|
|
frame(_frame),
|
|
pose(_pose),
|
|
reproj(_reproj),
|
|
depthFactor(_depthFactor),
|
|
onlySemisphere(_onlySemisphere)
|
|
{ }
|
|
|
|
virtual void operator ()(const cv::Range& r) const
|
|
{
|
|
for (int y = r.start; y < r.end; y++)
|
|
{
|
|
Vec3f* frameRow = frame[y];
|
|
for (int x = 0; x < frame.cols; x++)
|
|
{
|
|
Vec3f pix = 0;
|
|
|
|
Point3f orig = pose.translation();
|
|
// direction through pixel
|
|
Point3f screenVec = reproj(Point3f((float)x, (float)y, 1.f));
|
|
Point3f dir = normalize(Vec3f(pose.rotation() * screenVec));
|
|
// screen space axis
|
|
dir.y = -dir.y;
|
|
|
|
const float maxDepth = 20.f;
|
|
const float maxSteps = 256;
|
|
float t = 0.f;
|
|
for (int step = 0; step < maxSteps && t < maxDepth; step++)
|
|
{
|
|
Point3f p = orig + dir * t;
|
|
float d = Scene::map(p, onlySemisphere);
|
|
if (d < 0.000001f)
|
|
{
|
|
float m = 0.25f;
|
|
float p0 = float(abs(fmod(p.x, m)) > m / 2.f);
|
|
float p1 = float(abs(fmod(p.y, m)) > m / 2.f);
|
|
float p2 = float(abs(fmod(p.z, m)) > m / 2.f);
|
|
|
|
pix[0] = p0 + p1;
|
|
pix[1] = p1 + p2;
|
|
pix[2] = p0 + p2;
|
|
|
|
pix *= 128.f;
|
|
break;
|
|
}
|
|
t += d;
|
|
}
|
|
|
|
frameRow[x] = pix;
|
|
}
|
|
}
|
|
}
|
|
|
|
Mat_<Vec3f>& frame;
|
|
Affine3f pose;
|
|
Reprojector reproj;
|
|
float depthFactor;
|
|
bool onlySemisphere;
|
|
};
|
|
|
|
|
|
struct Scene
|
|
{
|
|
virtual ~Scene() {}
|
|
static Ptr<Scene> create(Size sz, Matx33f _intr, float _depthFactor, bool onlySemisphere);
|
|
virtual Mat_<float> depth(Affine3f pose) = 0;
|
|
virtual Mat_<Vec3f> rgb(Affine3f pose) = 0;
|
|
virtual std::vector<Affine3f> getPoses() = 0;
|
|
};
|
|
|
|
struct SemisphereScene : Scene
|
|
{
|
|
const int framesPerCycle = 72;
|
|
const float nCycles = 0.25f;
|
|
const Affine3f startPose = Affine3f(Vec3f(0.f, 0.f, 0.f), Vec3f(1.5f, 0.3f, -2.1f));
|
|
|
|
Size frameSize;
|
|
Matx33f intr;
|
|
float depthFactor;
|
|
bool onlySemisphere;
|
|
|
|
SemisphereScene(Size sz, Matx33f _intr, float _depthFactor, bool _onlySemisphere) :
|
|
frameSize(sz), intr(_intr), depthFactor(_depthFactor), onlySemisphere(_onlySemisphere)
|
|
{ }
|
|
|
|
static float map(Point3f p, bool onlySemisphere)
|
|
{
|
|
float plane = p.y + 0.5f;
|
|
Point3f spherePose = p - Point3f(-0.0f, 0.3f, 1.1f);
|
|
float sphereRadius = 0.5f;
|
|
float sphere = (float)cv::norm(spherePose) - sphereRadius;
|
|
float sphereMinusBox = sphere;
|
|
|
|
float subSphereRadius = 0.05f;
|
|
Point3f subSpherePose = p - Point3f(0.3f, -0.1f, -0.3f);
|
|
float subSphere = (float)cv::norm(subSpherePose) - subSphereRadius;
|
|
|
|
float res;
|
|
if (!onlySemisphere)
|
|
res = min({ sphereMinusBox, subSphere, plane });
|
|
else
|
|
res = sphereMinusBox;
|
|
|
|
return res;
|
|
}
|
|
|
|
Mat_<float> depth(Affine3f pose) override
|
|
{
|
|
Mat_<float> frame(frameSize);
|
|
Reprojector reproj(intr);
|
|
|
|
Range range(0, frame.rows);
|
|
parallel_for_(range, RenderInvoker<SemisphereScene>(frame, pose, reproj, depthFactor, onlySemisphere));
|
|
|
|
return frame;
|
|
}
|
|
|
|
Mat_<Vec3f> rgb(Affine3f pose) override
|
|
{
|
|
Mat_<Vec3f> frame(frameSize);
|
|
Reprojector reproj(intr);
|
|
|
|
Range range(0, frame.rows);
|
|
parallel_for_(range, RenderColorInvoker<SemisphereScene>(frame, pose, reproj, depthFactor, onlySemisphere));
|
|
|
|
return frame;
|
|
}
|
|
|
|
std::vector<Affine3f> getPoses() override
|
|
{
|
|
std::vector<Affine3f> poses;
|
|
for (int i = 0; i < framesPerCycle * nCycles; i++)
|
|
{
|
|
float angle = (float)(CV_2PI * i / framesPerCycle);
|
|
Affine3f pose;
|
|
pose = pose.rotate(startPose.rotation());
|
|
pose = pose.rotate(Vec3f(0.f, -0.5f, 0.f) * angle);
|
|
pose = pose.translate(Vec3f(startPose.translation()[0] * sin(angle),
|
|
startPose.translation()[1],
|
|
startPose.translation()[2] * cos(angle)));
|
|
poses.push_back(pose);
|
|
}
|
|
|
|
return poses;
|
|
}
|
|
|
|
};
|
|
|
|
Ptr<Scene> Scene::create(Size sz, Matx33f _intr, float _depthFactor, bool _onlySemisphere)
|
|
{
|
|
return makePtr<SemisphereScene>(sz, _intr, _depthFactor, _onlySemisphere);
|
|
}
|
|
|
|
// this is a temporary solution
|
|
// ----------------------------
|
|
|
|
typedef cv::Vec4f ptype;
|
|
typedef cv::Mat_< ptype > Points;
|
|
typedef cv::Mat_< ptype > Colors;
|
|
typedef Points Normals;
|
|
typedef Size2i Size;
|
|
|
|
template<int p>
|
|
inline float specPow(float x)
|
|
{
|
|
if (p % 2 == 0)
|
|
{
|
|
float v = specPow<p / 2>(x);
|
|
return v * v;
|
|
}
|
|
else
|
|
{
|
|
float v = specPow<(p - 1) / 2>(x);
|
|
return v * v * x;
|
|
}
|
|
}
|
|
|
|
template<>
|
|
inline float specPow<0>(float /*x*/)
|
|
{
|
|
return 1.f;
|
|
}
|
|
|
|
template<>
|
|
inline float specPow<1>(float x)
|
|
{
|
|
return x;
|
|
}
|
|
|
|
inline cv::Vec3f fromPtype(const ptype& x)
|
|
{
|
|
return cv::Vec3f(x[0], x[1], x[2]);
|
|
}
|
|
|
|
inline Point3f normalize(const Vec3f& v)
|
|
{
|
|
double nv = sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
|
|
return v * (nv ? 1. / nv : 0.);
|
|
}
|
|
|
|
void renderPointsNormals(InputArray _points, InputArray _normals, OutputArray image, Affine3f lightPose)
|
|
{
|
|
Size sz = _points.size();
|
|
image.create(sz, CV_8UC4);
|
|
|
|
Points points = _points.getMat();
|
|
Normals normals = _normals.getMat();
|
|
|
|
Mat_<Vec4b> img = image.getMat();
|
|
|
|
Mat goods;
|
|
finiteMask(points, goods);
|
|
|
|
Range range(0, sz.height);
|
|
const int nstripes = -1;
|
|
parallel_for_(range, [&](const Range&)
|
|
{
|
|
for (int y = range.start; y < range.end; y++)
|
|
{
|
|
Vec4b* imgRow = img[y];
|
|
const ptype* ptsRow = points[y];
|
|
const ptype* nrmRow = normals[y];
|
|
const uchar* goodRow = goods.ptr<uchar>(y);
|
|
|
|
for (int x = 0; x < sz.width; x++)
|
|
{
|
|
Point3f p = fromPtype(ptsRow[x]);
|
|
Point3f n = fromPtype(nrmRow[x]);
|
|
|
|
Vec4b color;
|
|
|
|
if ( !goodRow[x] )
|
|
{
|
|
color = Vec4b(0, 32, 0, 0);
|
|
}
|
|
else
|
|
{
|
|
const float Ka = 0.3f; //ambient coeff
|
|
const float Kd = 0.5f; //diffuse coeff
|
|
const float Ks = 0.2f; //specular coeff
|
|
const int sp = 20; //specular power
|
|
|
|
const float Ax = 1.f; //ambient color, can be RGB
|
|
const float Dx = 1.f; //diffuse color, can be RGB
|
|
const float Sx = 1.f; //specular color, can be RGB
|
|
const float Lx = 1.f; //light color
|
|
|
|
Point3f l = normalize(lightPose.translation() - Vec3f(p));
|
|
Point3f v = normalize(-Vec3f(p));
|
|
Point3f r = normalize(Vec3f(2.f * n * n.dot(l) - l));
|
|
|
|
uchar ix = (uchar)((Ax * Ka * Dx + Lx * Kd * Dx * max(0.f, n.dot(l)) +
|
|
Lx * Ks * Sx * specPow<sp>(max(0.f, r.dot(v)))) * 255.f);
|
|
color = Vec4b(ix, ix, ix, 0);
|
|
}
|
|
|
|
imgRow[x] = color;
|
|
}
|
|
}
|
|
}, nstripes);
|
|
}
|
|
void renderPointsNormalsColors(InputArray _points, InputArray, InputArray _colors, OutputArray image, Affine3f)
|
|
{
|
|
Size sz = _points.size();
|
|
image.create(sz, CV_8UC4);
|
|
|
|
Points points = _points.getMat();
|
|
Colors colors = _colors.getMat();
|
|
|
|
Mat goods, goodp, goodc;
|
|
finiteMask(points, goodp);
|
|
finiteMask(colors, goodc);
|
|
goods = goodp & goodc;
|
|
|
|
Mat_<Vec4b> img = image.getMat();
|
|
|
|
Range range(0, sz.height);
|
|
const int nstripes = -1;
|
|
parallel_for_(range, [&](const Range&)
|
|
{
|
|
for (int y = range.start; y < range.end; y++)
|
|
{
|
|
Vec4b* imgRow = img[y];
|
|
const ptype* clrRow = colors[y];
|
|
const uchar* goodRow = goods.ptr<uchar>(y);
|
|
|
|
for (int x = 0; x < sz.width; x++)
|
|
{
|
|
Point3f c = fromPtype(clrRow[x]);
|
|
|
|
Vec4b color;
|
|
|
|
if ( !goodRow[x] )
|
|
{
|
|
color = Vec4b(0, 32, 0, 0);
|
|
}
|
|
else
|
|
{
|
|
color = Vec4b((uchar)c.x, (uchar)c.y, (uchar)c.z, (uchar)0);
|
|
}
|
|
|
|
imgRow[x] = color;
|
|
}
|
|
}
|
|
}, nstripes);
|
|
}
|
|
// ----------------------------
|
|
|
|
void displayImage(Mat depth, Mat points, Mat normals, float depthFactor, Vec3f lightPose)
|
|
{
|
|
Mat image;
|
|
patchNaNs(points);
|
|
imshow("depth", depth * (1.f / depthFactor / 4.f));
|
|
renderPointsNormals(points, normals, image, lightPose);
|
|
imshow("render", image);
|
|
waitKey(100);
|
|
}
|
|
|
|
void displayColorImage(Mat depth, Mat rgb, Mat points, Mat normals, Mat colors, float depthFactor, Vec3f lightPose)
|
|
{
|
|
Mat image;
|
|
patchNaNs(points);
|
|
imshow("depth", depth * (1.f / depthFactor / 4.f));
|
|
imshow("rgb", rgb * (1.f / 255.f));
|
|
renderPointsNormalsColors(points, normals, colors, image, lightPose);
|
|
imshow("render", image);
|
|
waitKey(100);
|
|
}
|
|
|
|
static const bool display = false;
|
|
|
|
enum PlatformType
|
|
{
|
|
CPU = 0, GPU = 1
|
|
};
|
|
CV_ENUM(PlatformTypeEnum, PlatformType::CPU, PlatformType::GPU);
|
|
|
|
enum Sequence
|
|
{
|
|
ALL = 0, FIRST = 1
|
|
};
|
|
CV_ENUM(SequenceEnum, Sequence::ALL, Sequence::FIRST);
|
|
|
|
enum class VolumeTestSrcType
|
|
{
|
|
MAT = 0,
|
|
ODOMETRY_FRAME = 1
|
|
};
|
|
|
|
// used to store current OpenCL status (on/off) and revert it after test is done
|
|
// works even after exceptions thrown in test body
|
|
struct OpenCLStatusRevert
|
|
{
|
|
#ifdef HAVE_OPENCL
|
|
OpenCLStatusRevert()
|
|
{
|
|
originalOpenCLStatus = cv::ocl::useOpenCL();
|
|
}
|
|
~OpenCLStatusRevert()
|
|
{
|
|
cv::ocl::setUseOpenCL(originalOpenCLStatus);
|
|
}
|
|
void off()
|
|
{
|
|
cv::ocl::setUseOpenCL(false);
|
|
}
|
|
bool originalOpenCLStatus;
|
|
#else
|
|
void off() { }
|
|
#endif
|
|
};
|
|
|
|
// CV_ENUM does not support enum class types, so let's implement the class explicitly
|
|
namespace
|
|
{
|
|
struct VolumeTypeEnum
|
|
{
|
|
static const std::array<VolumeType, 3> vals;
|
|
static const std::array<std::string, 3> svals;
|
|
|
|
VolumeTypeEnum(VolumeType v = VolumeType::TSDF) : val(v) {}
|
|
operator VolumeType() const { return val; }
|
|
void PrintTo(std::ostream *os) const
|
|
{
|
|
int v = int(val);
|
|
if (v >= 0 && v < 3)
|
|
{
|
|
*os << svals[v];
|
|
}
|
|
else
|
|
{
|
|
*os << "UNKNOWN";
|
|
}
|
|
}
|
|
static ::testing::internal::ParamGenerator<VolumeTypeEnum> all()
|
|
{
|
|
return ::testing::Values(VolumeTypeEnum(vals[0]), VolumeTypeEnum(vals[1]), VolumeTypeEnum(vals[2]));
|
|
}
|
|
|
|
private:
|
|
VolumeType val;
|
|
};
|
|
const std::array<VolumeType, 3> VolumeTypeEnum::vals{VolumeType::TSDF, VolumeType::HashTSDF, VolumeType::ColorTSDF};
|
|
const std::array<std::string, 3> VolumeTypeEnum::svals{std::string("TSDF"), std::string("HashTSDF"), std::string("ColorTSDF")};
|
|
|
|
static inline void PrintTo(const VolumeTypeEnum &t, std::ostream *os) { t.PrintTo(os); }
|
|
|
|
|
|
struct VolumeTestSrcTypeEnum
|
|
{
|
|
static const std::array<VolumeTestSrcType, 2> vals;
|
|
static const std::array<std::string, 2> svals;
|
|
|
|
VolumeTestSrcTypeEnum(VolumeTestSrcType v = VolumeTestSrcType::MAT) : val(v) {}
|
|
operator VolumeTestSrcType() const { return val; }
|
|
void PrintTo(std::ostream *os) const
|
|
{
|
|
int v = int(val);
|
|
if (v >= 0 && v < 3)
|
|
{
|
|
*os << svals[v];
|
|
}
|
|
else
|
|
{
|
|
*os << "UNKNOWN";
|
|
}
|
|
}
|
|
static ::testing::internal::ParamGenerator<VolumeTestSrcTypeEnum> all()
|
|
{
|
|
return ::testing::Values(VolumeTestSrcTypeEnum(vals[0]), VolumeTestSrcTypeEnum(vals[1]));
|
|
}
|
|
|
|
private:
|
|
VolumeTestSrcType val;
|
|
};
|
|
const std::array<VolumeTestSrcType, 2> VolumeTestSrcTypeEnum::vals{VolumeTestSrcType::MAT, VolumeTestSrcType::ODOMETRY_FRAME};
|
|
const std::array<std::string, 2> VolumeTestSrcTypeEnum::svals{std::string("UMat"), std::string("OdometryFrame")};
|
|
|
|
static inline void PrintTo(const VolumeTestSrcTypeEnum &t, std::ostream *os) { t.PrintTo(os); }
|
|
}
|
|
|
|
typedef std::tuple<PlatformTypeEnum, VolumeTypeEnum> PlatformVolumeType;
|
|
class VolumePerfFixture : public perf::TestBaseWithParam<std::tuple<PlatformVolumeType, VolumeTestSrcTypeEnum, SequenceEnum>>
|
|
{
|
|
protected:
|
|
void SetUp() override
|
|
{
|
|
TestBase::SetUp();
|
|
|
|
auto p = GetParam();
|
|
gpu = (std::get<0>(std::get<0>(p)) == PlatformType::GPU);
|
|
volumeType = std::get<1>(std::get<0>(p));
|
|
|
|
testSrcType = std::get<1>(p);
|
|
|
|
repeat1st = (std::get<2>(p) == Sequence::FIRST);
|
|
|
|
if (!gpu)
|
|
oclStatus.off();
|
|
|
|
VolumeSettings vs(volumeType);
|
|
volume = makePtr<Volume>(volumeType, vs);
|
|
|
|
frameSize = Size(vs.getRaycastWidth(), vs.getRaycastHeight());
|
|
Matx33f intrIntegrate;
|
|
vs.getCameraIntegrateIntrinsics(intrIntegrate);
|
|
vs.getCameraRaycastIntrinsics(intrRaycast);
|
|
bool onlySemisphere = false;
|
|
depthFactor = vs.getDepthFactor();
|
|
scene = Scene::create(frameSize, intrIntegrate, depthFactor, onlySemisphere);
|
|
poses = scene->getPoses();
|
|
}
|
|
|
|
bool gpu;
|
|
VolumeType volumeType;
|
|
VolumeTestSrcType testSrcType;
|
|
bool repeat1st;
|
|
|
|
OpenCLStatusRevert oclStatus;
|
|
|
|
Ptr<Volume> volume;
|
|
Size frameSize;
|
|
Matx33f intrRaycast;
|
|
Ptr<Scene> scene;
|
|
std::vector<Affine3f> poses;
|
|
float depthFactor;
|
|
};
|
|
|
|
|
|
PERF_TEST_P_(VolumePerfFixture, integrate)
|
|
{
|
|
for (size_t i = 0; i < (repeat1st ? 1 : poses.size()); i++)
|
|
{
|
|
Matx44f pose = poses[i].matrix;
|
|
Mat depth = scene->depth(pose);
|
|
Mat rgb = scene->rgb(pose);
|
|
UMat urgb, udepth;
|
|
depth.copyTo(udepth);
|
|
rgb.copyTo(urgb);
|
|
OdometryFrame odf(udepth, urgb);
|
|
|
|
bool done = false;
|
|
while (repeat1st ? next() : !done)
|
|
{
|
|
startTimer();
|
|
if (testSrcType == VolumeTestSrcType::MAT)
|
|
if (volumeType == VolumeType::ColorTSDF)
|
|
volume->integrate(udepth, urgb, pose);
|
|
else
|
|
volume->integrate(udepth, pose);
|
|
else if (testSrcType == VolumeTestSrcType::ODOMETRY_FRAME)
|
|
volume->integrate(odf, pose);
|
|
stopTimer();
|
|
|
|
// perf check makes sense only for identical states
|
|
if (repeat1st)
|
|
volume->reset();
|
|
|
|
done = true;
|
|
}
|
|
}
|
|
SANITY_CHECK_NOTHING();
|
|
}
|
|
|
|
|
|
PERF_TEST_P_(VolumePerfFixture, raycast)
|
|
{
|
|
for (size_t i = 0; i < (repeat1st ? 1 : poses.size()); i++)
|
|
{
|
|
Matx44f pose = poses[i].matrix;
|
|
Mat depth = scene->depth(pose);
|
|
Mat rgb = scene->rgb(pose);
|
|
UMat urgb, udepth;
|
|
depth.copyTo(udepth);
|
|
rgb.copyTo(urgb);
|
|
|
|
OdometryFrame odf(udepth, urgb);
|
|
|
|
if (testSrcType == VolumeTestSrcType::MAT)
|
|
if (volumeType == VolumeType::ColorTSDF)
|
|
volume->integrate(udepth, urgb, pose);
|
|
else
|
|
volume->integrate(udepth, pose);
|
|
else if (testSrcType == VolumeTestSrcType::ODOMETRY_FRAME)
|
|
volume->integrate(odf, pose);
|
|
|
|
UMat upoints, unormals, ucolors;
|
|
|
|
bool done = false;
|
|
while (repeat1st ? next() : !done)
|
|
{
|
|
startTimer();
|
|
if (volumeType == VolumeType::ColorTSDF)
|
|
volume->raycast(pose, frameSize.height, frameSize.width, intrRaycast, upoints, unormals, ucolors);
|
|
else
|
|
volume->raycast(pose, frameSize.height, frameSize.width, intrRaycast, upoints, unormals);
|
|
stopTimer();
|
|
|
|
done = true;
|
|
}
|
|
|
|
if (display)
|
|
{
|
|
Mat points, normals, colors;
|
|
points = upoints.getMat(ACCESS_READ);
|
|
normals = unormals.getMat(ACCESS_READ);
|
|
colors = ucolors.getMat(ACCESS_READ);
|
|
|
|
Vec3f lightPose = Vec3f::all(0.f);
|
|
if (volumeType == VolumeType::ColorTSDF)
|
|
displayColorImage(depth, rgb, points, normals, colors, depthFactor, lightPose);
|
|
else
|
|
displayImage(depth, points, normals, depthFactor, lightPose);
|
|
}
|
|
}
|
|
SANITY_CHECK_NOTHING();
|
|
}
|
|
|
|
//TODO: fix it when ColorTSDF gets GPU version
|
|
INSTANTIATE_TEST_CASE_P(Volume, VolumePerfFixture, /*::testing::Combine(PlatformTypeEnum::all(), VolumeTypeEnum::all())*/
|
|
::testing::Combine(
|
|
::testing::Values(PlatformVolumeType {PlatformType::CPU, VolumeType::TSDF},
|
|
PlatformVolumeType {PlatformType::CPU, VolumeType::HashTSDF},
|
|
PlatformVolumeType {PlatformType::CPU, VolumeType::ColorTSDF},
|
|
PlatformVolumeType {PlatformType::GPU, VolumeType::TSDF},
|
|
PlatformVolumeType {PlatformType::GPU, VolumeType::HashTSDF}),
|
|
VolumeTestSrcTypeEnum::all(), SequenceEnum::all()));
|
|
|
|
}} // namespace
|