mirror of
https://github.com/opencv/opencv.git
synced 2025-01-09 21:27:59 +08:00
127 lines
4.5 KiB
Python
127 lines
4.5 KiB
Python
from collections import OrderedDict
|
|
import cv2 as cv
|
|
import numpy as np
|
|
|
|
from .blender import Blender
|
|
|
|
|
|
class SeamFinder:
|
|
"""https://docs.opencv.org/5.x/d7/d09/classcv_1_1detail_1_1SeamFinder.html""" # noqa
|
|
SEAM_FINDER_CHOICES = OrderedDict()
|
|
SEAM_FINDER_CHOICES['dp_color'] = cv.detail_DpSeamFinder('COLOR')
|
|
SEAM_FINDER_CHOICES['dp_colorgrad'] = cv.detail_DpSeamFinder('COLOR_GRAD')
|
|
SEAM_FINDER_CHOICES['voronoi'] = cv.detail.SeamFinder_createDefault(cv.detail.SeamFinder_VORONOI_SEAM) # noqa
|
|
SEAM_FINDER_CHOICES['no'] = cv.detail.SeamFinder_createDefault(cv.detail.SeamFinder_NO) # noqa
|
|
|
|
DEFAULT_SEAM_FINDER = list(SEAM_FINDER_CHOICES.keys())[0]
|
|
|
|
def __init__(self, finder=DEFAULT_SEAM_FINDER):
|
|
self.finder = SeamFinder.SEAM_FINDER_CHOICES[finder]
|
|
|
|
def find(self, imgs, corners, masks):
|
|
"""https://docs.opencv.org/5.x/d0/dd5/classcv_1_1detail_1_1DpSeamFinder.html#a7914624907986f7a94dd424209a8a609""" # noqa
|
|
imgs_float = [img.astype(np.float32) for img in imgs]
|
|
return self.finder.find(imgs_float, corners, masks)
|
|
|
|
@staticmethod
|
|
def resize(seam_mask, mask):
|
|
dilated_mask = cv.dilate(seam_mask, None)
|
|
resized_seam_mask = cv.resize(dilated_mask, (mask.shape[1],
|
|
mask.shape[0]),
|
|
0, 0, cv.INTER_LINEAR_EXACT)
|
|
return cv.bitwise_and(resized_seam_mask, mask)
|
|
|
|
@staticmethod
|
|
def draw_seam_mask(img, seam_mask, color=(0, 0, 0)):
|
|
seam_mask = cv.UMat.get(seam_mask)
|
|
overlayed_img = np.copy(img)
|
|
overlayed_img[seam_mask == 0] = color
|
|
return overlayed_img
|
|
|
|
@staticmethod
|
|
def draw_seam_polygons(panorama, blended_seam_masks, alpha=0.5):
|
|
return add_weighted_image(panorama, blended_seam_masks, alpha)
|
|
|
|
@staticmethod
|
|
def draw_seam_lines(panorama, blended_seam_masks,
|
|
linesize=1, color=(0, 0, 255)):
|
|
seam_lines = \
|
|
SeamFinder.exctract_seam_lines(blended_seam_masks, linesize)
|
|
panorama_with_seam_lines = panorama.copy()
|
|
panorama_with_seam_lines[seam_lines == 255] = color
|
|
return panorama_with_seam_lines
|
|
|
|
@staticmethod
|
|
def exctract_seam_lines(blended_seam_masks, linesize=1):
|
|
seam_lines = cv.Canny(np.uint8(blended_seam_masks), 100, 200)
|
|
seam_indices = (seam_lines == 255).nonzero()
|
|
seam_lines = remove_invalid_line_pixels(
|
|
seam_indices, seam_lines, blended_seam_masks
|
|
)
|
|
kernelsize = linesize + linesize - 1
|
|
kernel = np.ones((kernelsize, kernelsize), np.uint8)
|
|
return cv.dilate(seam_lines, kernel)
|
|
|
|
@staticmethod
|
|
def blend_seam_masks(seam_masks, corners, sizes):
|
|
imgs = colored_img_generator(sizes)
|
|
blended_seam_masks, _ = \
|
|
Blender.create_panorama(imgs, seam_masks, corners, sizes)
|
|
return blended_seam_masks
|
|
|
|
|
|
def colored_img_generator(sizes, colors=(
|
|
(255, 000, 000), # Blue
|
|
(000, 000, 255), # Red
|
|
(000, 255, 000), # Green
|
|
(000, 255, 255), # Yellow
|
|
(255, 000, 255), # Magenta
|
|
(128, 128, 255), # Pink
|
|
(128, 128, 128), # Gray
|
|
(000, 000, 128), # Brown
|
|
(000, 128, 255)) # Orange
|
|
):
|
|
for idx, size in enumerate(sizes):
|
|
if idx+1 > len(colors):
|
|
raise ValueError("Not enough default colors! Pass additional "
|
|
"colors to \"colors\" parameter")
|
|
yield create_img_by_size(size, colors[idx])
|
|
|
|
|
|
def create_img_by_size(size, color=(0, 0, 0)):
|
|
width, height = size
|
|
img = np.zeros((height, width, 3), np.uint8)
|
|
img[:] = color
|
|
return img
|
|
|
|
|
|
def add_weighted_image(img1, img2, alpha):
|
|
return cv.addWeighted(
|
|
img1, alpha, img2, (1.0 - alpha), 0.0
|
|
)
|
|
|
|
|
|
def remove_invalid_line_pixels(indices, lines, mask):
|
|
for x, y in zip(*indices):
|
|
if check_if_pixel_or_neighbor_is_black(mask, x, y):
|
|
lines[x, y] = 0
|
|
return lines
|
|
|
|
|
|
def check_if_pixel_or_neighbor_is_black(img, x, y):
|
|
check = [is_pixel_black(img, x, y),
|
|
is_pixel_black(img, x+1, y), is_pixel_black(img, x-1, y),
|
|
is_pixel_black(img, x, y+1), is_pixel_black(img, x, y-1)]
|
|
return any(check)
|
|
|
|
|
|
def is_pixel_black(img, x, y):
|
|
return np.all(get_pixel_value(img, x, y) == 0)
|
|
|
|
|
|
def get_pixel_value(img, x, y):
|
|
try:
|
|
return img[x, y]
|
|
except IndexError:
|
|
pass
|