mirror of
https://github.com/opencv/opencv.git
synced 2024-11-26 12:10:49 +08:00
170 lines
9.3 KiB
C++
170 lines
9.3 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
static const int fixedShiftU8 = 8;
|
|
static const int64_t fixedOne = (1L << fixedShiftU8);
|
|
|
|
int64_t v[][9] = {
|
|
{ fixedOne }, // size 1, sigma 0
|
|
{ fixedOne >> 2, fixedOne >> 1, fixedOne >> 2 }, // size 3, sigma 0
|
|
{ fixedOne >> 4, fixedOne >> 2, 6 * (fixedOne >> 4), fixedOne >> 2, fixedOne >> 4 }, // size 5, sigma 0
|
|
{ fixedOne >> 5, 7 * (fixedOne >> 6), 7 * (fixedOne >> 5), 9 * (fixedOne >> 5), 7 * (fixedOne >> 5), 7 * (fixedOne >> 6), fixedOne >> 5 }, // size 7, sigma 0
|
|
{ 4, 13, 30, 51, 61, 51, 30, 13, 4 }, // size 9, sigma 0
|
|
{ 81, 95, 81 }, // size 3, sigma 1.75
|
|
{ 65, 125, 65 }, // size 3, sigma 0.875
|
|
{ 0, 7, 242, 7, 0 }, // size 5, sigma 0.375
|
|
{ 4, 56, 136, 56, 4 } // size 5, sigma 0.75
|
|
};
|
|
|
|
template <typename T, int fixedShift>
|
|
T eval(Mat src, vector<int64_t> kernelx, vector<int64_t> kernely)
|
|
{
|
|
static const int64_t fixedRound = ((1LL << (fixedShift * 2)) >> 1);
|
|
int64_t val = 0;
|
|
for (size_t j = 0; j < kernely.size(); j++)
|
|
{
|
|
int64_t lineval = 0;
|
|
for (size_t i = 0; i < kernelx.size(); i++)
|
|
lineval += src.at<T>((int)j, (int)i) * kernelx[i];
|
|
val += lineval * kernely[j];
|
|
}
|
|
return saturate_cast<T>((val + fixedRound) >> (fixedShift * 2));
|
|
}
|
|
|
|
TEST(GaussianBlur_Bitexact, Linear8U)
|
|
{
|
|
struct testmode
|
|
{
|
|
int type;
|
|
Size sz;
|
|
Size kernel;
|
|
double sigma_x;
|
|
double sigma_y;
|
|
vector<int64_t> kernel_x;
|
|
vector<int64_t> kernel_y;
|
|
} modes[] = {
|
|
{ CV_8UC1, Size( 1, 1), Size(3, 3), 0, 0, vector<int64_t>(v[1], v[1]+3), vector<int64_t>(v[1], v[1]+3) },
|
|
{ CV_8UC1, Size( 2, 2), Size(3, 3), 0, 0, vector<int64_t>(v[1], v[1]+3), vector<int64_t>(v[1], v[1]+3) },
|
|
{ CV_8UC1, Size( 3, 1), Size(3, 3), 0, 0, vector<int64_t>(v[1], v[1]+3), vector<int64_t>(v[1], v[1]+3) },
|
|
{ CV_8UC1, Size( 1, 3), Size(3, 3), 0, 0, vector<int64_t>(v[1], v[1]+3), vector<int64_t>(v[1], v[1]+3) },
|
|
{ CV_8UC1, Size( 3, 3), Size(3, 3), 0, 0, vector<int64_t>(v[1], v[1]+3), vector<int64_t>(v[1], v[1]+3) },
|
|
{ CV_8UC1, Size( 3, 3), Size(5, 5), 0, 0, vector<int64_t>(v[2], v[2]+5), vector<int64_t>(v[2], v[2]+5) },
|
|
{ CV_8UC1, Size( 3, 3), Size(7, 7), 0, 0, vector<int64_t>(v[3], v[3]+7), vector<int64_t>(v[3], v[3]+7) },
|
|
{ CV_8UC1, Size( 5, 5), Size(3, 3), 0, 0, vector<int64_t>(v[1], v[1]+3), vector<int64_t>(v[1], v[1]+3) },
|
|
{ CV_8UC1, Size( 5, 5), Size(5, 5), 0, 0, vector<int64_t>(v[2], v[2]+5), vector<int64_t>(v[2], v[2]+5) },
|
|
{ CV_8UC1, Size( 3, 5), Size(5, 5), 0, 0, vector<int64_t>(v[2], v[2]+5), vector<int64_t>(v[2], v[2]+5) },
|
|
{ CV_8UC1, Size( 5, 5), Size(5, 5), 0, 0, vector<int64_t>(v[2], v[2]+5), vector<int64_t>(v[2], v[2]+5) },
|
|
{ CV_8UC1, Size( 5, 5), Size(7, 7), 0, 0, vector<int64_t>(v[3], v[3]+7), vector<int64_t>(v[3], v[3]+7) },
|
|
{ CV_8UC1, Size( 7, 7), Size(7, 7), 0, 0, vector<int64_t>(v[3], v[3]+7), vector<int64_t>(v[3], v[3]+7) },
|
|
{ CV_8UC1, Size( 256, 128), Size(3, 3), 0, 0, vector<int64_t>(v[1], v[1]+3), vector<int64_t>(v[1], v[1]+3) },
|
|
{ CV_8UC2, Size( 256, 128), Size(3, 3), 0, 0, vector<int64_t>(v[1], v[1]+3), vector<int64_t>(v[1], v[1]+3) },
|
|
{ CV_8UC3, Size( 256, 128), Size(3, 3), 0, 0, vector<int64_t>(v[1], v[1]+3), vector<int64_t>(v[1], v[1]+3) },
|
|
{ CV_8UC4, Size( 256, 128), Size(3, 3), 0, 0, vector<int64_t>(v[1], v[1]+3), vector<int64_t>(v[1], v[1]+3) },
|
|
{ CV_8UC1, Size( 256, 128), Size(5, 5), 0, 0, vector<int64_t>(v[2], v[2]+5), vector<int64_t>(v[2], v[2]+5) },
|
|
{ CV_8UC1, Size( 256, 128), Size(7, 7), 0, 0, vector<int64_t>(v[3], v[3]+7), vector<int64_t>(v[3], v[3]+7) },
|
|
{ CV_8UC1, Size( 256, 128), Size(9, 9), 0, 0, vector<int64_t>(v[4], v[4]+9), vector<int64_t>(v[4], v[4]+9) },
|
|
{ CV_8UC1, Size( 256, 128), Size(3, 3), 1.75, 0.875, vector<int64_t>(v[5], v[5]+3), vector<int64_t>(v[6], v[6]+3) },
|
|
{ CV_8UC2, Size( 256, 128), Size(3, 3), 1.75, 0.875, vector<int64_t>(v[5], v[5]+3), vector<int64_t>(v[6], v[6]+3) },
|
|
{ CV_8UC3, Size( 256, 128), Size(3, 3), 1.75, 0.875, vector<int64_t>(v[5], v[5]+3), vector<int64_t>(v[6], v[6]+3) },
|
|
{ CV_8UC4, Size( 256, 128), Size(3, 3), 1.75, 0.875, vector<int64_t>(v[5], v[5]+3), vector<int64_t>(v[6], v[6]+3) },
|
|
{ CV_8UC1, Size( 256, 128), Size(5, 5), 0.375, 0.75, vector<int64_t>(v[7], v[7]+5), vector<int64_t>(v[8], v[8]+5) }
|
|
};
|
|
|
|
int bordermodes[] = {
|
|
BORDER_CONSTANT | BORDER_ISOLATED,
|
|
BORDER_REPLICATE | BORDER_ISOLATED,
|
|
BORDER_REFLECT | BORDER_ISOLATED,
|
|
BORDER_WRAP | BORDER_ISOLATED,
|
|
BORDER_REFLECT_101 | BORDER_ISOLATED
|
|
// BORDER_CONSTANT,
|
|
// BORDER_REPLICATE,
|
|
// BORDER_REFLECT,
|
|
// BORDER_WRAP,
|
|
// BORDER_REFLECT_101
|
|
};
|
|
|
|
for (int modeind = 0, _modecnt = sizeof(modes) / sizeof(modes[0]); modeind < _modecnt; ++modeind)
|
|
{
|
|
int type = modes[modeind].type, depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
|
|
int dcols = modes[modeind].sz.width, drows = modes[modeind].sz.height;
|
|
Size kernel = modes[modeind].kernel;
|
|
|
|
int rows = drows + 20, cols = dcols + 20;
|
|
Mat src(rows, cols, type), refdst(drows, dcols, type), dst;
|
|
for (int j = 0; j < rows; j++)
|
|
{
|
|
uint8_t* line = src.ptr(j);
|
|
for (int i = 0; i < cols; i++)
|
|
for (int c = 0; c < cn; c++)
|
|
{
|
|
RNG rnd(0x123456789abcdefULL);
|
|
double val = j < rows / 2 ? (i < cols / 2 ? ((sin((i + 1)*CV_PI / 256.)*sin((j + 1)*CV_PI / 256.)*sin((cn + 4)*CV_PI / 8.) + 1.)*128.) :
|
|
(((i / 128 + j / 128) % 2) * 250 + (j / 128) % 2)) :
|
|
(i < cols / 2 ? ((i / 128) * (85 - j / 256 * 40) * ((j / 128) % 2) + (7 - i / 128) * (85 - j / 256 * 40) * ((j / 128 + 1) % 2)) :
|
|
((uchar)rnd));
|
|
if (depth == CV_8U)
|
|
line[i*cn + c] = (uint8_t)val;
|
|
else if (depth == CV_16U)
|
|
((uint16_t*)line)[i*cn + c] = (uint16_t)val;
|
|
else if (depth == CV_16S)
|
|
((int16_t*)line)[i*cn + c] = (int16_t)val;
|
|
else if (depth == CV_32S)
|
|
((int32_t*)line)[i*cn + c] = (int32_t)val;
|
|
else
|
|
CV_Assert(0);
|
|
}
|
|
}
|
|
Mat src_roi = src(Rect(10, 10, dcols, drows));
|
|
|
|
|
|
for (int borderind = 0, _bordercnt = sizeof(bordermodes) / sizeof(bordermodes[0]); borderind < _bordercnt; ++borderind)
|
|
{
|
|
Mat src_border;
|
|
cv::copyMakeBorder(src_roi, src_border, kernel.height / 2, kernel.height / 2, kernel.width / 2, kernel.width / 2, bordermodes[borderind]);
|
|
for (int c = 0; c < src_border.channels(); c++)
|
|
{
|
|
int fromTo[2] = { c, 0 };
|
|
int toFrom[2] = { 0, c };
|
|
Mat src_chan(src_border.size(), CV_MAKETYPE(src_border.depth(),1));
|
|
Mat dst_chan(refdst.size(), CV_MAKETYPE(refdst.depth(), 1));
|
|
mixChannels(src_border, src_chan, fromTo, 1);
|
|
for (int j = 0; j < drows; j++)
|
|
for (int i = 0; i < dcols; i++)
|
|
{
|
|
if (depth == CV_8U)
|
|
dst_chan.at<uint8_t>(j, i) = eval<uint8_t, fixedShiftU8>(src_chan(Rect(i,j,kernel.width,kernel.height)), modes[modeind].kernel_x, modes[modeind].kernel_y);
|
|
else if (depth == CV_16U)
|
|
dst_chan.at<uint16_t>(j, i) = eval<uint16_t, fixedShiftU8>(src_chan(Rect(i, j, kernel.width, kernel.height)), modes[modeind].kernel_x, modes[modeind].kernel_y);
|
|
else if (depth == CV_16S)
|
|
dst_chan.at<int16_t>(j, i) = eval<int16_t, fixedShiftU8>(src_chan(Rect(i, j, kernel.width, kernel.height)), modes[modeind].kernel_x, modes[modeind].kernel_y);
|
|
else if (depth == CV_32S)
|
|
dst_chan.at<int32_t>(j, i) = eval<int32_t, fixedShiftU8>(src_chan(Rect(i, j, kernel.width, kernel.height)), modes[modeind].kernel_x, modes[modeind].kernel_y);
|
|
else
|
|
CV_Assert(0);
|
|
}
|
|
mixChannels(dst_chan, refdst, toFrom, 1);
|
|
}
|
|
|
|
cv::GaussianBlur(src_roi, dst, kernel, modes[modeind].sigma_x, modes[modeind].sigma_y, bordermodes[borderind]);
|
|
|
|
EXPECT_GE(0, cvtest::norm(refdst, dst, cv::NORM_L1))
|
|
<< "GaussianBlur " << cn << "-chan mat " << drows << "x" << dcols << " by kernel " << kernel << " sigma(" << modes[modeind].sigma_x << ";" << modes[modeind].sigma_y << ") failed with max diff " << cvtest::norm(refdst, dst, cv::NORM_INF);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(GaussianBlur_Bitexact, regression_15015)
|
|
{
|
|
Mat src(100,100,CV_8UC3,Scalar(255,255,255));
|
|
Mat dst;
|
|
GaussianBlur(src, dst, Size(5, 5), 9);
|
|
ASSERT_EQ(0.0, cvtest::norm(dst, src, NORM_INF));
|
|
}
|
|
|
|
}} // namespace
|